Esponenziali Decrescenti e Applicazioni
Non tutti gli esponenziali crescono - alcuni decrescono! Quando la base a è compresa tra 0 e 1 (cioè $0 < a < 1$), ottieni una funzione esponenziale decrescente. Pensa al dimezzamento radioattivo: ogni anno rimane metà della sostanza precedente.
La curva gaussiana y=Ae−(x−xˉ)2/2σ2 è un'applicazione importantissima degli esponenziali che incontrerai spesso in statistica e scienze. Descrive la distribuzione normale e ti aiuta a calcolare probabilità.
Il numero di Nepero si ottiene con questo limite: e=limn→∞(1+n1)n≈2,718. Anche se sembra complicato, rappresenta un concetto naturale di crescita continua.
💡 Applicazione pratica: La curva gaussiana descrive moltissimi fenomeni naturali, dai voti scolastici all'altezza delle persone!