Materie

Materie

Di più

Learn About Lines: Formulas and Fun Exercises

Vedi

Learn About Lines: Formulas and Fun Exercises

Aqui está o resumo otimizado em português:

A equação da reta no plano cartesiano é um conceito fundamental da geometria analítica. Ela permite representar matematicamente uma reta usando coordenadas cartesianas. A forma geral da equação é y = mx + q, onde m é o coeficiente angular e pendência da retta, e q é o ponto onde a reta intercepta o eixo y. O coeficiente angular expressa a inclinação da reta - quanto maior seu valor absoluto, mais íngreme é a reta. Conceitos importantes incluem retas paralelas, perpendiculares, e fórmulas para determinar a equação da reta dados pontos ou condições específicas.

• A equação y = mx + q permite representar qualquer reta no plano cartesiano
• O coeficiente angular m indica a inclinação da reta
• Existem fórmulas específicas para retas paralelas, perpendiculares e que passam por pontos dados
• É possível converter entre as formas implícita e explícita da equação da reta
• Conceitos como distância ponto-reta e feixes de retas são aplicações importantes

5/1/2023

11073

RETTA NEL PIANO CARTESIANO
•SPIEGAZIONE EQUAZIONE E COEFFICIENTE ANGOLARE
y=mx+q
LE
1(0;9)
P
Cosa H
E RETTE
send
y=mx+q₂₁
COEFFICIENTE
ANGOL

Vedi

Conclusão e Revisão

A equação da reta no plano cartesiano é um tópico fundamental da geometria analítica, com amplas aplicações em matemática, física e engenharia. Os principais conceitos abordados incluem:

  • Formas da equação da reta (explícita, implícita, segmentária)
  • Coeficiente angular e inclinação da reta
  • Posições relativas entre retas
  • Distância de um ponto a uma reta
  • Fascios de retas

Destaque: Dominar estes conceitos permite resolver uma ampla gama de problemas geométricos e algébricos envolvendo retas no plano.

Revisão dos pontos-chave:

  1. y = mx + q é a forma geral da equação da reta
  2. O coeficiente angular m representa a inclinação da reta
  3. Retas paralelas têm o mesmo coeficiente angular
  4. Retas perpendiculares têm coeficientes angulares cujo produto é -1
  5. A distância de um ponto a uma reta pode ser calculada usando uma fórmula específica

Vocabulário final:

  • Equação da reta no plano cartesiano: representação algébrica de uma reta usando coordenadas x e y
  • Coeficiente angular: número que representa a inclinação da reta
  • Formulas para retas paralelas e perpendiculares: relações entre os coeficientes angulares de retas com posições relativas específicas

Compreender profundamente estes conceitos e praticar sua aplicação em diversos contextos é essencial para o sucesso em geometria analítica e áreas relacionadas.

RETTA NEL PIANO CARTESIANO
•SPIEGAZIONE EQUAZIONE E COEFFICIENTE ANGOLARE
y=mx+q
LE
1(0;9)
P
Cosa H
E RETTE
send
y=mx+q₂₁
COEFFICIENTE
ANGOL

Vedi

Forms of Line Equations and Line Relationships

This section covers different ways to express the equazione della retta and explores relationships between lines.

The explicit form y = mx + q can be converted to and from the implicit form ax + by + c = 0. Special cases include:

  • Lines through the origin: y = mx
  • Vertical lines: x = k
  • Horizontal lines: y = k

Example: To convert 2x + 3y + 2 = 0 to explicit form, solve for y: y = (-2/3)x - 2/3

Line relationships are crucial in geometry:

  • Rette parallele (parallel lines) have the same slope
  • Rette perpendicolari (perpendicular lines) have slopes that are negative reciprocals of each other

Definition: Two lines are perpendicular if and only if the product of their slopes is -1: m₁ · m₂ = -1

The section also introduces systems of equations to find intersection points between lines, with three possible outcomes: one solution (intersecting lines), no solution (parallel lines), or infinite solutions (coincident lines).

Highlight: Understanding these relationships is essential for solving geometric problems and analyzing line configurations in the Cartesian plane.

RETTA NEL PIANO CARTESIANO
•SPIEGAZIONE EQUAZIONE E COEFFICIENTE ANGOLARE
y=mx+q
LE
1(0;9)
P
Cosa H
E RETTE
send
y=mx+q₂₁
COEFFICIENTE
ANGOL

Vedi

Equations of Lines Through Points

This section focuses on deriving the equazione della retta passante per due punti (equation of a line passing through two points) and related concepts.

The general form for a line passing through a point (x₀, y₀) with slope m is: y - y₀ = m(x - x₀)

This formula is particularly useful for finding equations of lines that are:

  • Parallel to a given line and passing through a specific point
  • Perpendicular to a given line and passing through a specific point

Example: To find the equation of a line passing through (2,3) with slope 4, use y - 3 = 4(x - 2)

For a line passing through two points (x₁, y₁) and (x₂, y₂), the equation becomes: (y - y₁) / (y₂ - y₁) = (x - x₁) / (x₂ - x₁)

Highlight: This form is particularly useful when you don't know the slope but have two points on the line.

The section also introduces the concept of the perpendicular bisector of a line segment, which is the set of points equidistant from the segment's endpoints.

Definition: The perpendicular bisector is a line perpendicular to a segment that passes through its midpoint.

Understanding these equations is crucial for solving various geometric problems involving lines and points in the Cartesian plane.

RETTA NEL PIANO CARTESIANO
•SPIEGAZIONE EQUAZIONE E COEFFICIENTE ANGOLARE
y=mx+q
LE
1(0;9)
P
Cosa H
E RETTE
send
y=mx+q₂₁
COEFFICIENTE
ANGOL

Vedi

Conclusion and Further Applications

This final section summarizes the key concepts covered and hints at further applications of line equations in more advanced mathematics.

Key takeaways include:

  • The importance of understanding different forms of line equations
  • The relationship between slopes and geometric properties of lines
  • The use of line bundles to represent sets of related lines

Highlight: Mastery of these concepts forms a crucial foundation for more advanced topics in analytic geometry and calculus.

The section suggests potential applications in fields such as:

  • Physics (for describing trajectories and forces)
  • Economics (for modeling linear relationships between variables)
  • Computer graphics (for rendering and transforming lines in 2D and 3D spaces)

It emphasizes the importance of practice in solving a variety of problems to fully grasp these concepts and their applications.

Quote: "Understanding the equation of a line is not just about memorizing formulas, but about developing a geometric intuition that can be applied to a wide range of real-world problems."

The document concludes by encouraging students to explore further resources and practice problems to deepen their understanding of lines in the Cartesian plane.

RETTA NEL PIANO CARTESIANO
•SPIEGAZIONE EQUAZIONE E COEFFICIENTE ANGOLARE
y=mx+q
LE
1(0;9)
P
Cosa H
E RETTE
send
y=mx+q₂₁
COEFFICIENTE
ANGOL

Vedi

Understanding the Equation of a Line

The equazione della retta formula y = mx + q forms the basis for describing straight lines in the Cartesian plane. Here, m represents the coefficiente angolare (slope) which expresses the line's steepness, while q is the y-intercept where the line crosses the y-axis.

Definition: The slope m is calculated as the change in y divided by the change in x between two points on the line: m = (y₂ - y₁) / (x₂ - x₁)

The slope has important geometric meanings:

  • Positive slopes tilt upward to the right
  • Negative slopes tilt downward to the right
  • Larger absolute values indicate steeper lines
  • Special cases include m = 0 for horizontal lines and undefined slope for vertical lines

Example: For a line passing through (0,3) and (4,7), the slope would be m = (7-3)/(4-0) = 1

The relationship between slope and trigonometric functions is also explored, with m being equivalent to the tangent of the angle the line makes with the positive x-axis.

Highlight: Understanding slope is crucial for analyzing relationships between lines, such as parallel and perpendicular lines.

RETTA NEL PIANO CARTESIANO
•SPIEGAZIONE EQUAZIONE E COEFFICIENTE ANGOLARE
y=mx+q
LE
1(0;9)
P
Cosa H
E RETTE
send
y=mx+q₂₁
COEFFICIENTE
ANGOL

Vedi

Advanced Line Concepts

This section delves into more advanced concepts related to lines in the Cartesian plane.

The bisettrice (angle bisector) is introduced as the set of points equidistant from the sides of an angle. This concept is important in geometry for understanding relationships between lines and angles.

The distance from a point to a line is discussed, with the formula:

d(P,r) = |ax + by + c| / √(a² + b²)

where (x,y) are the coordinates of point P and ax + by + c = 0 is the equation of line r.

Example: For a line 3x + 4y - 10 = 0 and a point (2,1), the distance would be |3(2) + 4(1) - 10| / √(3² + 4²) = 2 / 5

The concept of a fascio proprio di rette (proper pencil of lines) is introduced. This is a set of lines passing through a single point, with each line having a different slope.

Definition: A proper pencil of lines is represented by the equation y - y₀ = m(x - x₀), where (x₀, y₀) is the common point and m varies.

These advanced concepts are crucial for solving complex geometric problems and understanding the relationships between lines and points in the Cartesian plane.

RETTA NEL PIANO CARTESIANO
•SPIEGAZIONE EQUAZIONE E COEFFICIENTE ANGOLARE
y=mx+q
LE
1(0;9)
P
Cosa H
E RETTE
send
y=mx+q₂₁
COEFFICIENTE
ANGOL

Vedi

Advanced Exercises with Line Bundles

This section provides more complex exercises involving line bundles, building on the concepts introduced earlier.

The exercises focus on:

  1. Determining whether a given bundle is proper or improper
  2. Finding specific lines within a bundle that meet certain criteria

Example: For the bundle kx + (2-k)y + 2 - 2k = 0, find the line passing through the point (3,2)

The solution process typically involves:

  1. Substituting the given point coordinates into the bundle equation
  2. Solving for the parameter k
  3. Substituting the found k back into the bundle equation to get the specific line

The section also covers finding lines in the bundle that are perpendicular to a given line. This involves:

  1. Expressing the bundle in slope-intercept form
  2. Using the perpendicularity condition (product of slopes = -1)
  3. Solving for k and substituting back

Highlight: These exercises require a deep understanding of line equations, slopes, and geometric relationships between lines.

Special cases are also addressed, such as finding lines in the bundle parallel to the y-axis. This involves setting the x-coefficient to zero and solving for k.

These advanced exercises provide valuable practice in manipulating line equations and understanding the geometric implications of algebraic manipulations.

RETTA NEL PIANO CARTESIANO
•SPIEGAZIONE EQUAZIONE E COEFFICIENTE ANGOLARE
y=mx+q
LE
1(0;9)
P
Cosa H
E RETTE
send
y=mx+q₂₁
COEFFICIENTE
ANGOL

Vedi

Line Bundles and Practical Exercises

This section introduces the concept of fascio improprio di rette (improper pencil of lines) and provides practical exercises involving line bundles.

An improper pencil of lines is a set of parallel lines with the same slope but different y-intercepts. It's represented by the equation y = mx + k, where m is fixed and k varies.

Example: y = 2x + k represents all lines with slope 2, parallel to y = 2x

The section then moves on to exercises involving line bundles. These exercises typically involve:

  1. Determining if a bundle is proper or improper
  2. Finding the equation of a line in the bundle passing through a given point
  3. Finding a line in the bundle perpendicular to a given line

Highlight: Solving these exercises requires a good understanding of line equations, slopes, and the relationships between parallel and perpendicular lines.

The general approach to these problems involves:

  1. Setting up the general equation of the bundle
  2. Applying the given conditions (e.g., passing through a point)
  3. Solving for the parameter k
  4. Substituting the found k back into the bundle equation

These exercises help reinforce understanding of line relationships and provide practice in manipulating line equations.

Non c'è niente di adatto? Esplorare altre aree tematiche.

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

Knowunity è stata inserita in un articolo di Apple ed è costantemente in cima alle classifiche degli app store nella categoria istruzione in Germania, Italia, Polonia, Svizzera e Regno Unito. Unisciti a Knowunity oggi stesso e aiuta milioni di studenti in tutto il mondo.

Ranked #1 Education App

Scarica

Google Play

Scarica

App Store

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

4.9+

Valutazione media dell'app

13 M

Studenti che usano Knowunity

#1

Nelle classifiche delle app per l'istruzione in 12 Paesi

950 K+

Studenti che hanno caricato appunti

Non siete ancora sicuri? Guarda cosa dicono gli altri studenti...

Utente iOS

Adoro questa applicazione [...] consiglio Knowunity a tutti!!! Sono passato da un 5 a una 8 con questa app

Stefano S, utente iOS

L'applicazione è molto semplice e ben progettata. Finora ho sempre trovato quello che stavo cercando

Susanna, utente iOS

Adoro questa app ❤️, la uso praticamente sempre quando studio.

Learn About Lines: Formulas and Fun Exercises

Aqui está o resumo otimizado em português:

A equação da reta no plano cartesiano é um conceito fundamental da geometria analítica. Ela permite representar matematicamente uma reta usando coordenadas cartesianas. A forma geral da equação é y = mx + q, onde m é o coeficiente angular e pendência da retta, e q é o ponto onde a reta intercepta o eixo y. O coeficiente angular expressa a inclinação da reta - quanto maior seu valor absoluto, mais íngreme é a reta. Conceitos importantes incluem retas paralelas, perpendiculares, e fórmulas para determinar a equação da reta dados pontos ou condições específicas.

• A equação y = mx + q permite representar qualquer reta no plano cartesiano
• O coeficiente angular m indica a inclinação da reta
• Existem fórmulas específicas para retas paralelas, perpendiculares e que passam por pontos dados
• É possível converter entre as formas implícita e explícita da equação da reta
• Conceitos como distância ponto-reta e feixes de retas são aplicações importantes

5/1/2023

11073

 

2ªl/3ªl

 

Matematica

541

RETTA NEL PIANO CARTESIANO
•SPIEGAZIONE EQUAZIONE E COEFFICIENTE ANGOLARE
y=mx+q
LE
1(0;9)
P
Cosa H
E RETTE
send
y=mx+q₂₁
COEFFICIENTE
ANGOL

Conclusão e Revisão

A equação da reta no plano cartesiano é um tópico fundamental da geometria analítica, com amplas aplicações em matemática, física e engenharia. Os principais conceitos abordados incluem:

  • Formas da equação da reta (explícita, implícita, segmentária)
  • Coeficiente angular e inclinação da reta
  • Posições relativas entre retas
  • Distância de um ponto a uma reta
  • Fascios de retas

Destaque: Dominar estes conceitos permite resolver uma ampla gama de problemas geométricos e algébricos envolvendo retas no plano.

Revisão dos pontos-chave:

  1. y = mx + q é a forma geral da equação da reta
  2. O coeficiente angular m representa a inclinação da reta
  3. Retas paralelas têm o mesmo coeficiente angular
  4. Retas perpendiculares têm coeficientes angulares cujo produto é -1
  5. A distância de um ponto a uma reta pode ser calculada usando uma fórmula específica

Vocabulário final:

  • Equação da reta no plano cartesiano: representação algébrica de uma reta usando coordenadas x e y
  • Coeficiente angular: número que representa a inclinação da reta
  • Formulas para retas paralelas e perpendiculares: relações entre os coeficientes angulares de retas com posições relativas específicas

Compreender profundamente estes conceitos e praticar sua aplicação em diversos contextos é essencial para o sucesso em geometria analítica e áreas relacionadas.

RETTA NEL PIANO CARTESIANO
•SPIEGAZIONE EQUAZIONE E COEFFICIENTE ANGOLARE
y=mx+q
LE
1(0;9)
P
Cosa H
E RETTE
send
y=mx+q₂₁
COEFFICIENTE
ANGOL

Forms of Line Equations and Line Relationships

This section covers different ways to express the equazione della retta and explores relationships between lines.

The explicit form y = mx + q can be converted to and from the implicit form ax + by + c = 0. Special cases include:

  • Lines through the origin: y = mx
  • Vertical lines: x = k
  • Horizontal lines: y = k

Example: To convert 2x + 3y + 2 = 0 to explicit form, solve for y: y = (-2/3)x - 2/3

Line relationships are crucial in geometry:

  • Rette parallele (parallel lines) have the same slope
  • Rette perpendicolari (perpendicular lines) have slopes that are negative reciprocals of each other

Definition: Two lines are perpendicular if and only if the product of their slopes is -1: m₁ · m₂ = -1

The section also introduces systems of equations to find intersection points between lines, with three possible outcomes: one solution (intersecting lines), no solution (parallel lines), or infinite solutions (coincident lines).

Highlight: Understanding these relationships is essential for solving geometric problems and analyzing line configurations in the Cartesian plane.

RETTA NEL PIANO CARTESIANO
•SPIEGAZIONE EQUAZIONE E COEFFICIENTE ANGOLARE
y=mx+q
LE
1(0;9)
P
Cosa H
E RETTE
send
y=mx+q₂₁
COEFFICIENTE
ANGOL

Equations of Lines Through Points

This section focuses on deriving the equazione della retta passante per due punti (equation of a line passing through two points) and related concepts.

The general form for a line passing through a point (x₀, y₀) with slope m is: y - y₀ = m(x - x₀)

This formula is particularly useful for finding equations of lines that are:

  • Parallel to a given line and passing through a specific point
  • Perpendicular to a given line and passing through a specific point

Example: To find the equation of a line passing through (2,3) with slope 4, use y - 3 = 4(x - 2)

For a line passing through two points (x₁, y₁) and (x₂, y₂), the equation becomes: (y - y₁) / (y₂ - y₁) = (x - x₁) / (x₂ - x₁)

Highlight: This form is particularly useful when you don't know the slope but have two points on the line.

The section also introduces the concept of the perpendicular bisector of a line segment, which is the set of points equidistant from the segment's endpoints.

Definition: The perpendicular bisector is a line perpendicular to a segment that passes through its midpoint.

Understanding these equations is crucial for solving various geometric problems involving lines and points in the Cartesian plane.

RETTA NEL PIANO CARTESIANO
•SPIEGAZIONE EQUAZIONE E COEFFICIENTE ANGOLARE
y=mx+q
LE
1(0;9)
P
Cosa H
E RETTE
send
y=mx+q₂₁
COEFFICIENTE
ANGOL

Conclusion and Further Applications

This final section summarizes the key concepts covered and hints at further applications of line equations in more advanced mathematics.

Key takeaways include:

  • The importance of understanding different forms of line equations
  • The relationship between slopes and geometric properties of lines
  • The use of line bundles to represent sets of related lines

Highlight: Mastery of these concepts forms a crucial foundation for more advanced topics in analytic geometry and calculus.

The section suggests potential applications in fields such as:

  • Physics (for describing trajectories and forces)
  • Economics (for modeling linear relationships between variables)
  • Computer graphics (for rendering and transforming lines in 2D and 3D spaces)

It emphasizes the importance of practice in solving a variety of problems to fully grasp these concepts and their applications.

Quote: "Understanding the equation of a line is not just about memorizing formulas, but about developing a geometric intuition that can be applied to a wide range of real-world problems."

The document concludes by encouraging students to explore further resources and practice problems to deepen their understanding of lines in the Cartesian plane.

RETTA NEL PIANO CARTESIANO
•SPIEGAZIONE EQUAZIONE E COEFFICIENTE ANGOLARE
y=mx+q
LE
1(0;9)
P
Cosa H
E RETTE
send
y=mx+q₂₁
COEFFICIENTE
ANGOL

Understanding the Equation of a Line

The equazione della retta formula y = mx + q forms the basis for describing straight lines in the Cartesian plane. Here, m represents the coefficiente angolare (slope) which expresses the line's steepness, while q is the y-intercept where the line crosses the y-axis.

Definition: The slope m is calculated as the change in y divided by the change in x between two points on the line: m = (y₂ - y₁) / (x₂ - x₁)

The slope has important geometric meanings:

  • Positive slopes tilt upward to the right
  • Negative slopes tilt downward to the right
  • Larger absolute values indicate steeper lines
  • Special cases include m = 0 for horizontal lines and undefined slope for vertical lines

Example: For a line passing through (0,3) and (4,7), the slope would be m = (7-3)/(4-0) = 1

The relationship between slope and trigonometric functions is also explored, with m being equivalent to the tangent of the angle the line makes with the positive x-axis.

Highlight: Understanding slope is crucial for analyzing relationships between lines, such as parallel and perpendicular lines.

RETTA NEL PIANO CARTESIANO
•SPIEGAZIONE EQUAZIONE E COEFFICIENTE ANGOLARE
y=mx+q
LE
1(0;9)
P
Cosa H
E RETTE
send
y=mx+q₂₁
COEFFICIENTE
ANGOL

Advanced Line Concepts

This section delves into more advanced concepts related to lines in the Cartesian plane.

The bisettrice (angle bisector) is introduced as the set of points equidistant from the sides of an angle. This concept is important in geometry for understanding relationships between lines and angles.

The distance from a point to a line is discussed, with the formula:

d(P,r) = |ax + by + c| / √(a² + b²)

where (x,y) are the coordinates of point P and ax + by + c = 0 is the equation of line r.

Example: For a line 3x + 4y - 10 = 0 and a point (2,1), the distance would be |3(2) + 4(1) - 10| / √(3² + 4²) = 2 / 5

The concept of a fascio proprio di rette (proper pencil of lines) is introduced. This is a set of lines passing through a single point, with each line having a different slope.

Definition: A proper pencil of lines is represented by the equation y - y₀ = m(x - x₀), where (x₀, y₀) is the common point and m varies.

These advanced concepts are crucial for solving complex geometric problems and understanding the relationships between lines and points in the Cartesian plane.

RETTA NEL PIANO CARTESIANO
•SPIEGAZIONE EQUAZIONE E COEFFICIENTE ANGOLARE
y=mx+q
LE
1(0;9)
P
Cosa H
E RETTE
send
y=mx+q₂₁
COEFFICIENTE
ANGOL

Advanced Exercises with Line Bundles

This section provides more complex exercises involving line bundles, building on the concepts introduced earlier.

The exercises focus on:

  1. Determining whether a given bundle is proper or improper
  2. Finding specific lines within a bundle that meet certain criteria

Example: For the bundle kx + (2-k)y + 2 - 2k = 0, find the line passing through the point (3,2)

The solution process typically involves:

  1. Substituting the given point coordinates into the bundle equation
  2. Solving for the parameter k
  3. Substituting the found k back into the bundle equation to get the specific line

The section also covers finding lines in the bundle that are perpendicular to a given line. This involves:

  1. Expressing the bundle in slope-intercept form
  2. Using the perpendicularity condition (product of slopes = -1)
  3. Solving for k and substituting back

Highlight: These exercises require a deep understanding of line equations, slopes, and geometric relationships between lines.

Special cases are also addressed, such as finding lines in the bundle parallel to the y-axis. This involves setting the x-coefficient to zero and solving for k.

These advanced exercises provide valuable practice in manipulating line equations and understanding the geometric implications of algebraic manipulations.

RETTA NEL PIANO CARTESIANO
•SPIEGAZIONE EQUAZIONE E COEFFICIENTE ANGOLARE
y=mx+q
LE
1(0;9)
P
Cosa H
E RETTE
send
y=mx+q₂₁
COEFFICIENTE
ANGOL

Line Bundles and Practical Exercises

This section introduces the concept of fascio improprio di rette (improper pencil of lines) and provides practical exercises involving line bundles.

An improper pencil of lines is a set of parallel lines with the same slope but different y-intercepts. It's represented by the equation y = mx + k, where m is fixed and k varies.

Example: y = 2x + k represents all lines with slope 2, parallel to y = 2x

The section then moves on to exercises involving line bundles. These exercises typically involve:

  1. Determining if a bundle is proper or improper
  2. Finding the equation of a line in the bundle passing through a given point
  3. Finding a line in the bundle perpendicular to a given line

Highlight: Solving these exercises requires a good understanding of line equations, slopes, and the relationships between parallel and perpendicular lines.

The general approach to these problems involves:

  1. Setting up the general equation of the bundle
  2. Applying the given conditions (e.g., passing through a point)
  3. Solving for the parameter k
  4. Substituting the found k back into the bundle equation

These exercises help reinforce understanding of line relationships and provide practice in manipulating line equations.

Non c'è niente di adatto? Esplorare altre aree tematiche.

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

Knowunity è stata inserita in un articolo di Apple ed è costantemente in cima alle classifiche degli app store nella categoria istruzione in Germania, Italia, Polonia, Svizzera e Regno Unito. Unisciti a Knowunity oggi stesso e aiuta milioni di studenti in tutto il mondo.

Ranked #1 Education App

Scarica

Google Play

Scarica

App Store

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

4.9+

Valutazione media dell'app

13 M

Studenti che usano Knowunity

#1

Nelle classifiche delle app per l'istruzione in 12 Paesi

950 K+

Studenti che hanno caricato appunti

Non siete ancora sicuri? Guarda cosa dicono gli altri studenti...

Utente iOS

Adoro questa applicazione [...] consiglio Knowunity a tutti!!! Sono passato da un 5 a una 8 con questa app

Stefano S, utente iOS

L'applicazione è molto semplice e ben progettata. Finora ho sempre trovato quello che stavo cercando

Susanna, utente iOS

Adoro questa app ❤️, la uso praticamente sempre quando studio.