Materie

Materie

Di più

Impara gli Integrali: Esercizi Svolti e Formule in PDF

Vedi

Impara gli Integrali: Esercizi Svolti e Formule in PDF
user profile picture

Arianna Battaglia

@ariannabattaglia_27

·

282 Follower

Segui

Integrals are a fundamental concept in calculus, used to calculate areas under curves and solve complex mathematical problems. This guide covers indefinite integrals, definite integrals, and various integration techniques.

Key points:
• Indefinite integrals are written as ∫f(x)dx = F(x) + C
• The fundamental theorem of calculus connects derivatives and integrals
• Integration techniques include substitution, parts, and partial fractions
Riemann integrals are used to calculate definite integrals and areas

3/12/2022

12134

2' INTEGRALE
=D
LA PAMUTUA (= cioè l'integrale)
F(x) +C
Sn
F(x)
2) S x² dx
-
n dx
ES
PRAMUTI OF DI FUNZIONI ELEMENTARI
=
Integrali
INDEFINIT

Vedi

Integration of Sums and Differences

This page explains how to integrate sums and differences of functions. The main rule presented is:

Definition: ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx

The page provides examples of applying this rule to various integrals, such as:

Example: ∫(e^x - 3x² + 2)dx = e^x - x³ + 2x + C

It also mentions that this property allows for breaking down complex integrals into simpler parts, which can then be integrated separately and recombined.

Highlight: The ability to split integrals of sums and differences is a powerful tool for solving more complex integration problems.

2' INTEGRALE
=D
LA PAMUTUA (= cioè l'integrale)
F(x) +C
Sn
F(x)
2) S x² dx
-
n dx
ES
PRAMUTI OF DI FUNZIONI ELEMENTARI
=
Integrali
INDEFINIT

Vedi

Riemann Integrals

This page introduces the concept of Riemann integrals, which are used to define definite integrals.

Definition: The Riemann integral represents the area under a curve between two points.

The page outlines conditions for a function to be Riemann integrable:

  1. Continuous on the interval [a,b]
  2. Monotonic on [a,b]
  3. Limited and having at most a finite number of discontinuities

Highlight: The Riemann integral provides a rigorous foundation for calculating areas and volumes in calculus.

The page also mentions that the Riemann integral connects the concepts of indefinite and definite integrals, leading to the fundamental theorem of calculus.

2' INTEGRALE
=D
LA PAMUTUA (= cioè l'integrale)
F(x) +C
Sn
F(x)
2) S x² dx
-
n dx
ES
PRAMUTI OF DI FUNZIONI ELEMENTARI
=
Integrali
INDEFINIT

Vedi

Partial Fraction Decomposition

This page continues the discussion of integrating rational functions, focusing on the technique of partial fraction decomposition.

Definition: Partial fraction decomposition involves breaking a complex fraction into a sum of simpler fractions.

The page outlines the steps for this method:

  1. Ensure the numerator's degree is less than the denominator's
  2. Factor the denominator
  3. Write the fraction as a sum of partial fractions
  4. Solve for the coefficients of the partial fractions
  5. Integrate each partial fraction separately

Example: For ∫(6x + 4)/((x-2)(x-1))dx, decompose into A/(x-2) + B/(x-1) and solve for A and B

The page emphasizes that this technique is crucial for integrating many rational functions that cannot be integrated directly.

2' INTEGRALE
=D
LA PAMUTUA (= cioè l'integrale)
F(x) +C
Sn
F(x)
2) S x² dx
-
n dx
ES
PRAMUTI OF DI FUNZIONI ELEMENTARI
=
Integrali
INDEFINIT

Vedi

Integration by Parts

This page introduces the technique of integration by parts, which is used for integrating products of functions.

Definition: The formula for integration by parts is: ∫f(x)g'(x)dx = f(x)g(x) - ∫f'(x)g(x)dx

The page provides guidance on choosing which function to designate as f(x) and which as g'(x), suggesting to choose the simpler function to differentiate as f(x).

Example: To integrate ∫xe^x dx, choose f(x) = x and g'(x) = e^x. This leads to the solution: xe^x - ∫e^x dx = xe^x - e^x + C

The page emphasizes that integration by parts may need to be applied multiple times for some integrals.

2' INTEGRALE
=D
LA PAMUTUA (= cioè l'integrale)
F(x) +C
Sn
F(x)
2) S x² dx
-
n dx
ES
PRAMUTI OF DI FUNZIONI ELEMENTARI
=
Integrali
INDEFINIT

Vedi

Properties of Riemann Integrals

This page discusses important properties of Riemann integrals, which are crucial for working with definite integrals.

Key properties include:

  1. Linearity: ∫(af + bg)dx = a∫fdx + b∫gdx
  2. Monotonicity: If f ≤ g, then ∫fdx ≤ ∫gdx
  3. Additivity over intervals: ∫[a,c]f = ∫[a,b]f + ∫[b,c]f

Highlight: These properties allow for manipulation and simplification of complex definite integrals.

The page also introduces the concept of the integral mean value:

Definition: The integral mean value is given by (1/(b-a))∫[a,b]f(x)dx = f(c) for some c in [a,b]

This theorem is illustrated with a geometric interpretation, showing that the area under the curve equals the area of a rectangle with base (b-a) and height f(c).

2' INTEGRALE
=D
LA PAMUTUA (= cioè l'integrale)
F(x) +C
Sn
F(x)
2) S x² dx
-
n dx
ES
PRAMUTI OF DI FUNZIONI ELEMENTARI
=
Integrali
INDEFINIT

Vedi

Introduction to Integrals

This page introduces the concept of integrals and their notation. Indefinite integrals are presented as the inverse operation of differentiation.

Definition: An indefinite integral is written as ∫f(x)dx = F(x) + C, where F(x) is the antiderivative of f(x) and C is a constant of integration.

The page provides basic examples of indefinite integrals, including:

Example: ∫x dx = (1/2)x² + C

It also mentions that integrals of elementary functions often follow simple patterns.

Highlight: The integral of x^n is (1/(n+1))x^(n+1) + C, except when n = -1.

2' INTEGRALE
=D
LA PAMUTUA (= cioè l'integrale)
F(x) +C
Sn
F(x)
2) S x² dx
-
n dx
ES
PRAMUTI OF DI FUNZIONI ELEMENTARI
=
Integrali
INDEFINIT

Vedi

Integration of Rational Functions

This page discusses the integration of rational functions, which are fractions of polynomials.

Definition: A rational function is of the form f(x)/g(x), where f(x) and g(x) are polynomials.

The page outlines three cases based on the degrees of f(x) and g(x):

  1. Degree of f(x) > degree of g(x)
  2. Degree of f(x) = degree of g(x)
  3. Degree of f(x) < degree of g(x)

For case 1, the page explains the process of polynomial long division to simplify the integral.

Example: For ∫(x³ + 1)/(x² + 1)dx, divide x³ + 1 by x² + 1 to get x + (-x + 1)/(x² + 1)

The page emphasizes that after this division, the integral can be split into simpler parts that can be integrated separately.

2' INTEGRALE
=D
LA PAMUTUA (= cioè l'integrale)
F(x) +C
Sn
F(x)
2) S x² dx
-
n dx
ES
PRAMUTI OF DI FUNZIONI ELEMENTARI
=
Integrali
INDEFINIT

Vedi

Calculating Definite Integrals

This page focuses on practical methods for calculating definite integrals using the fundamental theorem of calculus.

Definition: The fundamental theorem of calculus states that if F is an antiderivative of f, then ∫[a,b]f(x)dx = F(b) - F(a)

The page provides several examples of calculating definite integrals:

Example: ∫[1,2](x³ - x)dx = [(1/4)x⁴ - (1/2)x²]₁² = (16/4 - 2) - (1/4 - 1/2) = 11/3

It also discusses how to handle integrals of even and odd functions over symmetric intervals.

Highlight: For an odd function f(x), ∫[-a,a]f(x)dx = 0

The page concludes by mentioning that when dealing with negative functions, the integral represents the negative of the area between the curve and the x-axis.

2' INTEGRALE
=D
LA PAMUTUA (= cioè l'integrale)
F(x) +C
Sn
F(x)
2) S x² dx
-
n dx
ES
PRAMUTI OF DI FUNZIONI ELEMENTARI
=
Integrali
INDEFINIT

Vedi

Integration by Substitution

This page covers the technique of integration by substitution, which is useful for integrating composite functions.

Definition: The general form of substitution is: ∫f(g(x))g'(x)dx = ∫f(u)du, where u = g(x)

The page provides a step-by-step approach to using this method:

  1. Identify a suitable substitution u = g(x)
  2. Calculate du = g'(x)dx
  3. Rewrite the integral in terms of u
  4. Integrate with respect to u
  5. Substitute back to express the result in terms of x

Example: To integrate ∫sin²(x)cos(x)dx, use u = sin(x), du = cos(x)dx. This transforms the integral to ∫u²du, which is easily solved.

The page emphasizes that choosing an appropriate substitution is key to successfully applying this method.

2' INTEGRALE
=D
LA PAMUTUA (= cioè l'integrale)
F(x) +C
Sn
F(x)
2) S x² dx
-
n dx
ES
PRAMUTI OF DI FUNZIONI ELEMENTARI
=
Integrali
INDEFINIT

Vedi

Basic Integration Rules

This page covers fundamental integration rules and properties. It presents several important indefinite integrals, including:

  1. ∫e^x dx = e^x + C
  2. ∫(1/x) dx = ln|x| + C
  3. ∫sin(x) dx = -cos(x) + C
  4. ∫cos(x) dx = sin(x) + C

Vocabulary: The natural logarithm function is denoted as "ln" in these formulas.

The page also introduces key properties of integrals:

Highlight: Constants can be "pulled out" of an integral: ∫kf(x)dx = k∫f(x)dx, where k is a constant.

It emphasizes that the rules for integrating elementary functions are similar to those for derivatives, but with some important differences.

Non c'è niente di adatto? Esplorare altre aree tematiche.

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

Knowunity è stata inserita in un articolo di Apple ed è costantemente in cima alle classifiche degli app store nella categoria istruzione in Germania, Italia, Polonia, Svizzera e Regno Unito. Unisciti a Knowunity oggi stesso e aiuta milioni di studenti in tutto il mondo.

Ranked #1 Education App

Scarica

Google Play

Scarica

App Store

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

4.9+

Valutazione media dell'app

13 M

Studenti che usano Knowunity

#1

Nelle classifiche delle app per l'istruzione in 12 Paesi

950 K+

Studenti che hanno caricato appunti

Non siete ancora sicuri? Guarda cosa dicono gli altri studenti...

Utente iOS

Adoro questa applicazione [...] consiglio Knowunity a tutti!!! Sono passato da un 5 a una 8 con questa app

Stefano S, utente iOS

L'applicazione è molto semplice e ben progettata. Finora ho sempre trovato quello che stavo cercando

Susanna, utente iOS

Adoro questa app ❤️, la uso praticamente sempre quando studio.

Impara gli Integrali: Esercizi Svolti e Formule in PDF

user profile picture

Arianna Battaglia

@ariannabattaglia_27

·

282 Follower

Segui

Integrals are a fundamental concept in calculus, used to calculate areas under curves and solve complex mathematical problems. This guide covers indefinite integrals, definite integrals, and various integration techniques.

Key points:
• Indefinite integrals are written as ∫f(x)dx = F(x) + C
• The fundamental theorem of calculus connects derivatives and integrals
• Integration techniques include substitution, parts, and partial fractions
Riemann integrals are used to calculate definite integrals and areas

3/12/2022

12134

 

4ªl/5ªl

 

Matematica

444

2' INTEGRALE
=D
LA PAMUTUA (= cioè l'integrale)
F(x) +C
Sn
F(x)
2) S x² dx
-
n dx
ES
PRAMUTI OF DI FUNZIONI ELEMENTARI
=
Integrali
INDEFINIT

Iscriviti per mostrare il contenuto. È gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Integration of Sums and Differences

This page explains how to integrate sums and differences of functions. The main rule presented is:

Definition: ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx

The page provides examples of applying this rule to various integrals, such as:

Example: ∫(e^x - 3x² + 2)dx = e^x - x³ + 2x + C

It also mentions that this property allows for breaking down complex integrals into simpler parts, which can then be integrated separately and recombined.

Highlight: The ability to split integrals of sums and differences is a powerful tool for solving more complex integration problems.

2' INTEGRALE
=D
LA PAMUTUA (= cioè l'integrale)
F(x) +C
Sn
F(x)
2) S x² dx
-
n dx
ES
PRAMUTI OF DI FUNZIONI ELEMENTARI
=
Integrali
INDEFINIT

Iscriviti per mostrare il contenuto. È gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Riemann Integrals

This page introduces the concept of Riemann integrals, which are used to define definite integrals.

Definition: The Riemann integral represents the area under a curve between two points.

The page outlines conditions for a function to be Riemann integrable:

  1. Continuous on the interval [a,b]
  2. Monotonic on [a,b]
  3. Limited and having at most a finite number of discontinuities

Highlight: The Riemann integral provides a rigorous foundation for calculating areas and volumes in calculus.

The page also mentions that the Riemann integral connects the concepts of indefinite and definite integrals, leading to the fundamental theorem of calculus.

2' INTEGRALE
=D
LA PAMUTUA (= cioè l'integrale)
F(x) +C
Sn
F(x)
2) S x² dx
-
n dx
ES
PRAMUTI OF DI FUNZIONI ELEMENTARI
=
Integrali
INDEFINIT

Iscriviti per mostrare il contenuto. È gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Partial Fraction Decomposition

This page continues the discussion of integrating rational functions, focusing on the technique of partial fraction decomposition.

Definition: Partial fraction decomposition involves breaking a complex fraction into a sum of simpler fractions.

The page outlines the steps for this method:

  1. Ensure the numerator's degree is less than the denominator's
  2. Factor the denominator
  3. Write the fraction as a sum of partial fractions
  4. Solve for the coefficients of the partial fractions
  5. Integrate each partial fraction separately

Example: For ∫(6x + 4)/((x-2)(x-1))dx, decompose into A/(x-2) + B/(x-1) and solve for A and B

The page emphasizes that this technique is crucial for integrating many rational functions that cannot be integrated directly.

2' INTEGRALE
=D
LA PAMUTUA (= cioè l'integrale)
F(x) +C
Sn
F(x)
2) S x² dx
-
n dx
ES
PRAMUTI OF DI FUNZIONI ELEMENTARI
=
Integrali
INDEFINIT

Iscriviti per mostrare il contenuto. È gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Integration by Parts

This page introduces the technique of integration by parts, which is used for integrating products of functions.

Definition: The formula for integration by parts is: ∫f(x)g'(x)dx = f(x)g(x) - ∫f'(x)g(x)dx

The page provides guidance on choosing which function to designate as f(x) and which as g'(x), suggesting to choose the simpler function to differentiate as f(x).

Example: To integrate ∫xe^x dx, choose f(x) = x and g'(x) = e^x. This leads to the solution: xe^x - ∫e^x dx = xe^x - e^x + C

The page emphasizes that integration by parts may need to be applied multiple times for some integrals.

2' INTEGRALE
=D
LA PAMUTUA (= cioè l'integrale)
F(x) +C
Sn
F(x)
2) S x² dx
-
n dx
ES
PRAMUTI OF DI FUNZIONI ELEMENTARI
=
Integrali
INDEFINIT

Iscriviti per mostrare il contenuto. È gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Properties of Riemann Integrals

This page discusses important properties of Riemann integrals, which are crucial for working with definite integrals.

Key properties include:

  1. Linearity: ∫(af + bg)dx = a∫fdx + b∫gdx
  2. Monotonicity: If f ≤ g, then ∫fdx ≤ ∫gdx
  3. Additivity over intervals: ∫[a,c]f = ∫[a,b]f + ∫[b,c]f

Highlight: These properties allow for manipulation and simplification of complex definite integrals.

The page also introduces the concept of the integral mean value:

Definition: The integral mean value is given by (1/(b-a))∫[a,b]f(x)dx = f(c) for some c in [a,b]

This theorem is illustrated with a geometric interpretation, showing that the area under the curve equals the area of a rectangle with base (b-a) and height f(c).

2' INTEGRALE
=D
LA PAMUTUA (= cioè l'integrale)
F(x) +C
Sn
F(x)
2) S x² dx
-
n dx
ES
PRAMUTI OF DI FUNZIONI ELEMENTARI
=
Integrali
INDEFINIT

Iscriviti per mostrare il contenuto. È gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Introduction to Integrals

This page introduces the concept of integrals and their notation. Indefinite integrals are presented as the inverse operation of differentiation.

Definition: An indefinite integral is written as ∫f(x)dx = F(x) + C, where F(x) is the antiderivative of f(x) and C is a constant of integration.

The page provides basic examples of indefinite integrals, including:

Example: ∫x dx = (1/2)x² + C

It also mentions that integrals of elementary functions often follow simple patterns.

Highlight: The integral of x^n is (1/(n+1))x^(n+1) + C, except when n = -1.

2' INTEGRALE
=D
LA PAMUTUA (= cioè l'integrale)
F(x) +C
Sn
F(x)
2) S x² dx
-
n dx
ES
PRAMUTI OF DI FUNZIONI ELEMENTARI
=
Integrali
INDEFINIT

Iscriviti per mostrare il contenuto. È gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Integration of Rational Functions

This page discusses the integration of rational functions, which are fractions of polynomials.

Definition: A rational function is of the form f(x)/g(x), where f(x) and g(x) are polynomials.

The page outlines three cases based on the degrees of f(x) and g(x):

  1. Degree of f(x) > degree of g(x)
  2. Degree of f(x) = degree of g(x)
  3. Degree of f(x) < degree of g(x)

For case 1, the page explains the process of polynomial long division to simplify the integral.

Example: For ∫(x³ + 1)/(x² + 1)dx, divide x³ + 1 by x² + 1 to get x + (-x + 1)/(x² + 1)

The page emphasizes that after this division, the integral can be split into simpler parts that can be integrated separately.

2' INTEGRALE
=D
LA PAMUTUA (= cioè l'integrale)
F(x) +C
Sn
F(x)
2) S x² dx
-
n dx
ES
PRAMUTI OF DI FUNZIONI ELEMENTARI
=
Integrali
INDEFINIT

Iscriviti per mostrare il contenuto. È gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Calculating Definite Integrals

This page focuses on practical methods for calculating definite integrals using the fundamental theorem of calculus.

Definition: The fundamental theorem of calculus states that if F is an antiderivative of f, then ∫[a,b]f(x)dx = F(b) - F(a)

The page provides several examples of calculating definite integrals:

Example: ∫[1,2](x³ - x)dx = [(1/4)x⁴ - (1/2)x²]₁² = (16/4 - 2) - (1/4 - 1/2) = 11/3

It also discusses how to handle integrals of even and odd functions over symmetric intervals.

Highlight: For an odd function f(x), ∫[-a,a]f(x)dx = 0

The page concludes by mentioning that when dealing with negative functions, the integral represents the negative of the area between the curve and the x-axis.

2' INTEGRALE
=D
LA PAMUTUA (= cioè l'integrale)
F(x) +C
Sn
F(x)
2) S x² dx
-
n dx
ES
PRAMUTI OF DI FUNZIONI ELEMENTARI
=
Integrali
INDEFINIT

Iscriviti per mostrare il contenuto. È gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Integration by Substitution

This page covers the technique of integration by substitution, which is useful for integrating composite functions.

Definition: The general form of substitution is: ∫f(g(x))g'(x)dx = ∫f(u)du, where u = g(x)

The page provides a step-by-step approach to using this method:

  1. Identify a suitable substitution u = g(x)
  2. Calculate du = g'(x)dx
  3. Rewrite the integral in terms of u
  4. Integrate with respect to u
  5. Substitute back to express the result in terms of x

Example: To integrate ∫sin²(x)cos(x)dx, use u = sin(x), du = cos(x)dx. This transforms the integral to ∫u²du, which is easily solved.

The page emphasizes that choosing an appropriate substitution is key to successfully applying this method.

2' INTEGRALE
=D
LA PAMUTUA (= cioè l'integrale)
F(x) +C
Sn
F(x)
2) S x² dx
-
n dx
ES
PRAMUTI OF DI FUNZIONI ELEMENTARI
=
Integrali
INDEFINIT

Iscriviti per mostrare il contenuto. È gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Basic Integration Rules

This page covers fundamental integration rules and properties. It presents several important indefinite integrals, including:

  1. ∫e^x dx = e^x + C
  2. ∫(1/x) dx = ln|x| + C
  3. ∫sin(x) dx = -cos(x) + C
  4. ∫cos(x) dx = sin(x) + C

Vocabulary: The natural logarithm function is denoted as "ln" in these formulas.

The page also introduces key properties of integrals:

Highlight: Constants can be "pulled out" of an integral: ∫kf(x)dx = k∫f(x)dx, where k is a constant.

It emphasizes that the rules for integrating elementary functions are similar to those for derivatives, but with some important differences.

Non c'è niente di adatto? Esplorare altre aree tematiche.

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

Knowunity è stata inserita in un articolo di Apple ed è costantemente in cima alle classifiche degli app store nella categoria istruzione in Germania, Italia, Polonia, Svizzera e Regno Unito. Unisciti a Knowunity oggi stesso e aiuta milioni di studenti in tutto il mondo.

Ranked #1 Education App

Scarica

Google Play

Scarica

App Store

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

4.9+

Valutazione media dell'app

13 M

Studenti che usano Knowunity

#1

Nelle classifiche delle app per l'istruzione in 12 Paesi

950 K+

Studenti che hanno caricato appunti

Non siete ancora sicuri? Guarda cosa dicono gli altri studenti...

Utente iOS

Adoro questa applicazione [...] consiglio Knowunity a tutti!!! Sono passato da un 5 a una 8 con questa app

Stefano S, utente iOS

L'applicazione è molto semplice e ben progettata. Finora ho sempre trovato quello che stavo cercando

Susanna, utente iOS

Adoro questa app ❤️, la uso praticamente sempre quando studio.