Materie

Materie

Di più

Formule e Derivate Facili: PDF e Tabelle

Vedi

Formule e Derivate Facili: PDF e Tabelle
user profile picture

elisa

@elisa_xghl

·

363 Follower

Segui

The document provides a comprehensive overview of derivative formulas and fundamental concepts in calculus. It covers the definition of derivatives, their geometric interpretation, and various rules for calculating derivatives of different functions. The material is presented with detailed explanations, examples, and proofs, making it an excellent resource for students studying analisi matematica.

1/1/2023

15580

Date :
o una FUNZIONE qualunque
o TANGENTE in un punto
e il mumero:
Ay
Ax
=
DERIVATE
RAPPORTO INCREHENTALE
Relativo al punto Xo e all'increm

Vedi

Proofs of Differentiation Rules

This page provides detailed proofs for some of the differentiation rules presented earlier. The proofs use the definition of the derivative and algebraic manipulation.

Key proofs include:

  1. Constant multiple rule
  2. Sum rule
  3. Product rule

Example: The proof of the product rule uses the limit definition and clever algebraic rearrangement to arrive at the final formula.

The page also includes examples of applying these rules to specific functions, such as y = 8cos x and y = 3x⁴.

Highlight: The product rule proof introduces a technique of adding and subtracting the same term to facilitate the limit calculation, which is a common strategy in more advanced proofs.

Date :
o una FUNZIONE qualunque
o TANGENTE in un punto
e il mumero:
Ay
Ax
=
DERIVATE
RAPPORTO INCREHENTALE
Relativo al punto Xo e all'increm

Vedi

Proofs of Fundamental Derivatives

This page provides detailed proofs for some of the derivate fondamentali presented earlier. The proofs use the definition of the derivative as the limit of the incremental ratio.

Key proofs include:

  1. Derivative of a constant function
  2. Derivative of y = x
  3. Derivative of y = xⁿ (using the binomial theorem)

Example: For y = x², the proof shows that y' = 2x using the limit definition and algebraic manipulation.

The page also includes examples of applying these proofs to specific functions, such as y = x² and y = x³.

Highlight: The general formula for the derivative of xⁿ is derived as y' = n·xⁿ⁻¹, which is a fundamental result in calculus.

Date :
o una FUNZIONE qualunque
o TANGENTE in un punto
e il mumero:
Ay
Ax
=
DERIVATE
RAPPORTO INCREHENTALE
Relativo al punto Xo e all'increm

Vedi

More Proofs of Differentiation Rules

This page continues with proofs of differentiation rules, focusing on the quotient rule and the chain rule.

Key proofs include:

  1. Quotient rule
  2. Chain rule

Highlight: The proof of the chain rule uses a change of variable technique, introducing z = g(x), which simplifies the limit calculation.

The page emphasizes the importance of these rules in calculating derivatives of complex functions. It also includes examples of applying the quotient rule to specific functions.

Example: The derivative of y = 5/e^x is calculated using the quotient rule, resulting in y' = -5e^(-x).

Date :
o una FUNZIONE qualunque
o TANGENTE in un punto
e il mumero:
Ay
Ax
=
DERIVATE
RAPPORTO INCREHENTALE
Relativo al punto Xo e all'increm

Vedi

More Derivative Proofs

This page continues with proofs of fundamental derivatives, focusing on more complex functions.

Key proofs include:

  1. Derivative of y = 1/x
  2. Derivative of y = eˣ
  3. Derivative of y = ln x
  4. Derivative of y = sin x

Highlight: The proof for the derivative of sin x uses important trigonometric identities and limit theorems.

The page emphasizes the use of limit theorems and algebraic manipulation to derive these important formulas. It also introduces the concept of notable limits, which are crucial for many derivative calculations.

Vocabulary: Notable limits are specific limit expressions that frequently appear in calculus and have known values, such as lim[x→0] (sin x) / x = 1.

Date :
o una FUNZIONE qualunque
o TANGENTE in un punto
e il mumero:
Ay
Ax
=
DERIVATE
RAPPORTO INCREHENTALE
Relativo al punto Xo e all'increm

Vedi

Introduction to Derivatives

This page introduces the concept of derivatives and their geometric interpretation.

The derivative of a function at a point is defined as the limit of the rapporto incrementale (incremental ratio) as the increment approaches zero. Geometrically, the derivative represents the slope of the tangent line to the function's graph at a given point.

Definition: The derivative of a function f(x) at x₀ is defined as: f'(x₀) = lim[h→0] [f(x₀+h) - f(x₀)] / h

Key concepts covered include:

  • Left-hand and right-hand derivatives
  • Notation for derivatives (f'(x), dy/dx, etc.)
  • Conditions for differentiability on a closed interval

Highlight: A function is differentiable on a closed interval [a,b] if it is differentiable at all interior points and has finite left and right derivatives at the endpoints.

The page also includes visual representations of the secant line approaching the tangent line as the increment h approaches zero.

Date :
o una FUNZIONE qualunque
o TANGENTE in un punto
e il mumero:
Ay
Ax
=
DERIVATE
RAPPORTO INCREHENTALE
Relativo al punto Xo e all'increm

Vedi

Practice Problems and Solutions

This final page provides practice problems for calculating derivatives, including one-sided derivatives and derivatives of more complex functions. It includes step-by-step solutions to guide students through the problem-solving process.

Key types of problems:

  • One-sided derivatives of piecewise functions
  • Derivatives involving absolute values
  • Application of various differentiation rules to complex functions

Example: One problem asks to calculate the left-hand and right-hand derivatives of f(x) = |-x² + 2x| at x = 2.

The page emphasizes the importance of carefully analyzing the function's behavior and choosing the appropriate differentiation techniques for each problem.

Highlight: When dealing with functions involving absolute values, it's essential to consider the function's definition on either side of the point where the absolute value becomes zero.

Date :
o una FUNZIONE qualunque
o TANGENTE in un punto
e il mumero:
Ay
Ax
=
DERIVATE
RAPPORTO INCREHENTALE
Relativo al punto Xo e all'increm

Vedi

Fundamental Derivative Formulas

This page presents a table of derivate fondamentali (fundamental derivatives) for common functions. These formulas are essential for calculating derivatives of more complex functions.

Key derivatives covered include:

  • Constant function: (k)' = 0
  • Power function: (xⁿ)' = n·xⁿ⁻¹
  • Exponential function: (eˣ)' = eˣ
  • Logarithmic function: (ln x)' = 1/x
  • Trigonometric functions: (sin x)' = cos x, (cos x)' = -sin x, (tan x)' = sec² x

Example: The derivative of y = √x is y' = 1 / (2√x)

The page also includes derivatives of inverse trigonometric functions, which are important for solving more advanced problems in calculus.

Date :
o una FUNZIONE qualunque
o TANGENTE in un punto
e il mumero:
Ay
Ax
=
DERIVATE
RAPPORTO INCREHENTALE
Relativo al punto Xo e all'increm

Vedi

Rules of Differentiation

This page presents the rules for differentiating combinations of functions, known as derivate composte (composite derivatives). These rules are essential for calculating derivatives of more complex functions.

Key rules covered include:

  • Constant multiple rule: (kf(x))' = k·f'(x)
  • Sum and difference rule: (f(x) ± g(x))' = f'(x) ± g'(x)
  • Product rule: (f(x)·g(x))' = f'(x)·g(x) + f(x)·g'(x)
  • Quotient rule: (f(x)/g(x))' = (f'(x)·g(x) - f(x)·g'(x)) / (g(x))²
  • Chain rule: (f(g(x)))' = f'(g(x))·g'(x)

Example: The derivative of y = e^(f(x)) is y' = e^(f(x)) · f'(x)

The page also includes formulas for derivatives of composite functions involving logarithms, trigonometric functions, and inverse trigonometric functions.

Date :
o una FUNZIONE qualunque
o TANGENTE in un punto
e il mumero:
Ay
Ax
=
DERIVATE
RAPPORTO INCREHENTALE
Relativo al punto Xo e all'increm

Vedi

Calculating One-Sided Derivatives

This page focuses on calculating one-sided derivatives for piecewise-defined functions. It provides examples and step-by-step solutions for finding left-hand and right-hand derivatives at specific points.

Key concepts covered:

  • Left-hand and right-hand limits
  • Continuity and differentiability at junction points of piecewise functions

Example: For the function f(x) = {x-3 if x≤3, x-1 if x>3}, the left-hand and right-hand derivatives at x=3 are calculated separately.

The page also includes an example of finding derivatives for a function involving absolute values, which requires careful consideration of the function's behavior on either side of the point where the absolute value changes.

Highlight: When dealing with piecewise functions or functions involving absolute values, it's crucial to consider the behavior of the function on both sides of the point of interest.

Date :
o una FUNZIONE qualunque
o TANGENTE in un punto
e il mumero:
Ay
Ax
=
DERIVATE
RAPPORTO INCREHENTALE
Relativo al punto Xo e all'increm

Vedi

Non c'è niente di adatto? Esplorare altre aree tematiche.

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

Knowunity è stata inserita in un articolo di Apple ed è costantemente in cima alle classifiche degli app store nella categoria istruzione in Germania, Italia, Polonia, Svizzera e Regno Unito. Unisciti a Knowunity oggi stesso e aiuta milioni di studenti in tutto il mondo.

Ranked #1 Education App

Scarica

Google Play

Scarica

App Store

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

4.9+

Valutazione media dell'app

13 M

Studenti che usano Knowunity

#1

Nelle classifiche delle app per l'istruzione in 12 Paesi

950 K+

Studenti che hanno caricato appunti

Non siete ancora sicuri? Guarda cosa dicono gli altri studenti...

Utente iOS

Adoro questa applicazione [...] consiglio Knowunity a tutti!!! Sono passato da un 5 a una 8 con questa app

Stefano S, utente iOS

L'applicazione è molto semplice e ben progettata. Finora ho sempre trovato quello che stavo cercando

Susanna, utente iOS

Adoro questa app ❤️, la uso praticamente sempre quando studio.

Formule e Derivate Facili: PDF e Tabelle

user profile picture

elisa

@elisa_xghl

·

363 Follower

Segui

The document provides a comprehensive overview of derivative formulas and fundamental concepts in calculus. It covers the definition of derivatives, their geometric interpretation, and various rules for calculating derivatives of different functions. The material is presented with detailed explanations, examples, and proofs, making it an excellent resource for students studying analisi matematica.

1/1/2023

15580

 

5ªl

 

Matematica

858

Date :
o una FUNZIONE qualunque
o TANGENTE in un punto
e il mumero:
Ay
Ax
=
DERIVATE
RAPPORTO INCREHENTALE
Relativo al punto Xo e all'increm

Proofs of Differentiation Rules

This page provides detailed proofs for some of the differentiation rules presented earlier. The proofs use the definition of the derivative and algebraic manipulation.

Key proofs include:

  1. Constant multiple rule
  2. Sum rule
  3. Product rule

Example: The proof of the product rule uses the limit definition and clever algebraic rearrangement to arrive at the final formula.

The page also includes examples of applying these rules to specific functions, such as y = 8cos x and y = 3x⁴.

Highlight: The product rule proof introduces a technique of adding and subtracting the same term to facilitate the limit calculation, which is a common strategy in more advanced proofs.

Date :
o una FUNZIONE qualunque
o TANGENTE in un punto
e il mumero:
Ay
Ax
=
DERIVATE
RAPPORTO INCREHENTALE
Relativo al punto Xo e all'increm

Proofs of Fundamental Derivatives

This page provides detailed proofs for some of the derivate fondamentali presented earlier. The proofs use the definition of the derivative as the limit of the incremental ratio.

Key proofs include:

  1. Derivative of a constant function
  2. Derivative of y = x
  3. Derivative of y = xⁿ (using the binomial theorem)

Example: For y = x², the proof shows that y' = 2x using the limit definition and algebraic manipulation.

The page also includes examples of applying these proofs to specific functions, such as y = x² and y = x³.

Highlight: The general formula for the derivative of xⁿ is derived as y' = n·xⁿ⁻¹, which is a fundamental result in calculus.

Date :
o una FUNZIONE qualunque
o TANGENTE in un punto
e il mumero:
Ay
Ax
=
DERIVATE
RAPPORTO INCREHENTALE
Relativo al punto Xo e all'increm

More Proofs of Differentiation Rules

This page continues with proofs of differentiation rules, focusing on the quotient rule and the chain rule.

Key proofs include:

  1. Quotient rule
  2. Chain rule

Highlight: The proof of the chain rule uses a change of variable technique, introducing z = g(x), which simplifies the limit calculation.

The page emphasizes the importance of these rules in calculating derivatives of complex functions. It also includes examples of applying the quotient rule to specific functions.

Example: The derivative of y = 5/e^x is calculated using the quotient rule, resulting in y' = -5e^(-x).

Date :
o una FUNZIONE qualunque
o TANGENTE in un punto
e il mumero:
Ay
Ax
=
DERIVATE
RAPPORTO INCREHENTALE
Relativo al punto Xo e all'increm

More Derivative Proofs

This page continues with proofs of fundamental derivatives, focusing on more complex functions.

Key proofs include:

  1. Derivative of y = 1/x
  2. Derivative of y = eˣ
  3. Derivative of y = ln x
  4. Derivative of y = sin x

Highlight: The proof for the derivative of sin x uses important trigonometric identities and limit theorems.

The page emphasizes the use of limit theorems and algebraic manipulation to derive these important formulas. It also introduces the concept of notable limits, which are crucial for many derivative calculations.

Vocabulary: Notable limits are specific limit expressions that frequently appear in calculus and have known values, such as lim[x→0] (sin x) / x = 1.

Date :
o una FUNZIONE qualunque
o TANGENTE in un punto
e il mumero:
Ay
Ax
=
DERIVATE
RAPPORTO INCREHENTALE
Relativo al punto Xo e all'increm

Introduction to Derivatives

This page introduces the concept of derivatives and their geometric interpretation.

The derivative of a function at a point is defined as the limit of the rapporto incrementale (incremental ratio) as the increment approaches zero. Geometrically, the derivative represents the slope of the tangent line to the function's graph at a given point.

Definition: The derivative of a function f(x) at x₀ is defined as: f'(x₀) = lim[h→0] [f(x₀+h) - f(x₀)] / h

Key concepts covered include:

  • Left-hand and right-hand derivatives
  • Notation for derivatives (f'(x), dy/dx, etc.)
  • Conditions for differentiability on a closed interval

Highlight: A function is differentiable on a closed interval [a,b] if it is differentiable at all interior points and has finite left and right derivatives at the endpoints.

The page also includes visual representations of the secant line approaching the tangent line as the increment h approaches zero.

Date :
o una FUNZIONE qualunque
o TANGENTE in un punto
e il mumero:
Ay
Ax
=
DERIVATE
RAPPORTO INCREHENTALE
Relativo al punto Xo e all'increm

Practice Problems and Solutions

This final page provides practice problems for calculating derivatives, including one-sided derivatives and derivatives of more complex functions. It includes step-by-step solutions to guide students through the problem-solving process.

Key types of problems:

  • One-sided derivatives of piecewise functions
  • Derivatives involving absolute values
  • Application of various differentiation rules to complex functions

Example: One problem asks to calculate the left-hand and right-hand derivatives of f(x) = |-x² + 2x| at x = 2.

The page emphasizes the importance of carefully analyzing the function's behavior and choosing the appropriate differentiation techniques for each problem.

Highlight: When dealing with functions involving absolute values, it's essential to consider the function's definition on either side of the point where the absolute value becomes zero.

Date :
o una FUNZIONE qualunque
o TANGENTE in un punto
e il mumero:
Ay
Ax
=
DERIVATE
RAPPORTO INCREHENTALE
Relativo al punto Xo e all'increm

Fundamental Derivative Formulas

This page presents a table of derivate fondamentali (fundamental derivatives) for common functions. These formulas are essential for calculating derivatives of more complex functions.

Key derivatives covered include:

  • Constant function: (k)' = 0
  • Power function: (xⁿ)' = n·xⁿ⁻¹
  • Exponential function: (eˣ)' = eˣ
  • Logarithmic function: (ln x)' = 1/x
  • Trigonometric functions: (sin x)' = cos x, (cos x)' = -sin x, (tan x)' = sec² x

Example: The derivative of y = √x is y' = 1 / (2√x)

The page also includes derivatives of inverse trigonometric functions, which are important for solving more advanced problems in calculus.

Date :
o una FUNZIONE qualunque
o TANGENTE in un punto
e il mumero:
Ay
Ax
=
DERIVATE
RAPPORTO INCREHENTALE
Relativo al punto Xo e all'increm

Rules of Differentiation

This page presents the rules for differentiating combinations of functions, known as derivate composte (composite derivatives). These rules are essential for calculating derivatives of more complex functions.

Key rules covered include:

  • Constant multiple rule: (kf(x))' = k·f'(x)
  • Sum and difference rule: (f(x) ± g(x))' = f'(x) ± g'(x)
  • Product rule: (f(x)·g(x))' = f'(x)·g(x) + f(x)·g'(x)
  • Quotient rule: (f(x)/g(x))' = (f'(x)·g(x) - f(x)·g'(x)) / (g(x))²
  • Chain rule: (f(g(x)))' = f'(g(x))·g'(x)

Example: The derivative of y = e^(f(x)) is y' = e^(f(x)) · f'(x)

The page also includes formulas for derivatives of composite functions involving logarithms, trigonometric functions, and inverse trigonometric functions.

Date :
o una FUNZIONE qualunque
o TANGENTE in un punto
e il mumero:
Ay
Ax
=
DERIVATE
RAPPORTO INCREHENTALE
Relativo al punto Xo e all'increm

Calculating One-Sided Derivatives

This page focuses on calculating one-sided derivatives for piecewise-defined functions. It provides examples and step-by-step solutions for finding left-hand and right-hand derivatives at specific points.

Key concepts covered:

  • Left-hand and right-hand limits
  • Continuity and differentiability at junction points of piecewise functions

Example: For the function f(x) = {x-3 if x≤3, x-1 if x>3}, the left-hand and right-hand derivatives at x=3 are calculated separately.

The page also includes an example of finding derivatives for a function involving absolute values, which requires careful consideration of the function's behavior on either side of the point where the absolute value changes.

Highlight: When dealing with piecewise functions or functions involving absolute values, it's crucial to consider the behavior of the function on both sides of the point of interest.

Date :
o una FUNZIONE qualunque
o TANGENTE in un punto
e il mumero:
Ay
Ax
=
DERIVATE
RAPPORTO INCREHENTALE
Relativo al punto Xo e all'increm

Non c'è niente di adatto? Esplorare altre aree tematiche.

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

Knowunity è stata inserita in un articolo di Apple ed è costantemente in cima alle classifiche degli app store nella categoria istruzione in Germania, Italia, Polonia, Svizzera e Regno Unito. Unisciti a Knowunity oggi stesso e aiuta milioni di studenti in tutto il mondo.

Ranked #1 Education App

Scarica

Google Play

Scarica

App Store

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

4.9+

Valutazione media dell'app

13 M

Studenti che usano Knowunity

#1

Nelle classifiche delle app per l'istruzione in 12 Paesi

950 K+

Studenti che hanno caricato appunti

Non siete ancora sicuri? Guarda cosa dicono gli altri studenti...

Utente iOS

Adoro questa applicazione [...] consiglio Knowunity a tutti!!! Sono passato da un 5 a una 8 con questa app

Stefano S, utente iOS

L'applicazione è molto semplice e ben progettata. Finora ho sempre trovato quello che stavo cercando

Susanna, utente iOS

Adoro questa app ❤️, la uso praticamente sempre quando studio.