Materie

Materie

Di più

Aventuras na Circonferência Goniométrica: Seno, Cosseno e Tangente para Crianças

Vedi

Aventuras na Circonferência Goniométrica: Seno, Cosseno e Tangente para Crianças
user profile picture

Benedetta

@study.with.bene

·

2 Follower

Segui

The unit circle (Circonferenza goniometrica) is a fundamental tool for understanding trigonometric functions and angle measurements. This comprehensive guide explores the relationships between degrees and radians, seno e coseno formule, and their applications.

  • The unit circle has a radius of 1 and is centered at the origin (0,0)
  • Key angles (0°, 30°, 45°, 60°, 90°) and their corresponding radian measures are explored
  • Trigonometric ratios (seno e coseno tabella) are derived from right triangle relationships
  • The four quadrants demonstrate how signs of trigonometric functions change
  • Fundamental identities like cos²(x) + sin²(x) = 1 are explained

10/6/2022

96

 ०८
0°
XO
30°
TIL
45°
60° T/3
90° /2
cose
716
180° T
270°
360 2T
FEF
DAL α:300=x: 2
AX" X=21.06
360
Gradi e Radianti
1
C. ALSHACENTE
IPOTENU

Vedi

Trigonometric Values and Special Angles

The second page focuses on the tabella seno e coseno, presenting a comprehensive table of sine and cosine values for special angles in the unit circle. This page is crucial for understanding the circonferenza goniometrica seno e coseno tangente.

Highlight: Special angles include 0°, 30°, 45°, 60°, 90°, 180°, 270°, and 360°.

The table provides exact values for sine and cosine at these angles, which is essential for solving trigonometric problems without a calculator.

Example: At 45°, both sine and cosine equal √2/2.

The page also includes visual representations of these special angles on the unit circle, helping to reinforce the relationship between the angle's position and its trigonometric values.

Vocabulary: Radian - an alternative way to measure angles, where 2π radians equal 360°.

Additionally, the page demonstrates how to calculate trigonometric values for specific angles, such as sin 45° and cos 30°, using the properties of right triangles inscribed in the unit circle.

 ०८
0°
XO
30°
TIL
45°
60° T/3
90° /2
cose
716
180° T
270°
360 2T
FEF
DAL α:300=x: 2
AX" X=21.06
360
Gradi e Radianti
1
C. ALSHACENTE
IPOTENU

Vedi

Trigonometric Identities and Quadrants

The third page delves into important trigonometric identities and the behavior of sine and cosine in different quadrants of the coordinate plane. This information is crucial for understanding circonferenza goniometrica formule.

Definition: Trigonometric identities are equations involving trigonometric functions that are true for all values of the variables.

The page presents the fundamental trigonometric identity:

Highlight: cos²(x) + sin²(x) = 1

This identity is the basis for many trigonometric calculations and proofs. The page also provides formulas for expressing sine in terms of cosine and vice versa:

Example: cos(a) = √(1 - sin²(a)) sin(a) = √(1 - cos²(a))

The concept of quadrants is introduced, showing how the signs of sine and cosine change in each quadrant of the coordinate plane. This is essential for solving trigonometric equations and understanding the behavior of trigonometric functions.

Vocabulary: Quadrant - one of four regions in the coordinate plane, divided by the x and y axes.

The page concludes with an example calculating sin(15°) using the half-angle formula and the known value of sin(30°), demonstrating practical application of trigonometric identities.

Example: sin(15°) = sin(30°/2) = 0.5/2 = 0.25

This comprehensive guide provides a solid foundation for understanding the circonferenza goniometrica seno e coseno, essential for students studying trigonometry and circular functions.

 ०८
0°
XO
30°
TIL
45°
60° T/3
90° /2
cose
716
180° T
270°
360 2T
FEF
DAL α:300=x: 2
AX" X=21.06
360
Gradi e Radianti
1
C. ALSHACENTE
IPOTENU

Vedi

Unit Circle and Trigonometric Functions

The first page introduces the circonferenza goniometrica, or unit circle, and its key properties. The unit circle is centered at the origin (0,0) with a radius of 1. It demonstrates the relationship between angles and their sine and cosine values.

Definition: The unit circle is a circle with a radius of 1 centered at the origin of a coordinate system.

The page illustrates how angles are measured counterclockwise from the positive x-axis. It shows key angles in both degrees and radians, such as 30°, 45°, 60°, 90°, 180°, 270°, and 360°.

Highlight: The sine of an angle is the y-coordinate on the unit circle, while the cosine is the x-coordinate.

The page also includes formulas for converting between degrees and radians:

Example: To convert from degrees to radians: α = (2π * x) / 360 To convert from radians to degrees: α = (360 * x) / (2π)

Lastly, it provides a visual representation of sine, cosine, and tangent in relation to a right-angled triangle within the unit circle.

 ०८
0°
XO
30°
TIL
45°
60° T/3
90° /2
cose
716
180° T
270°
360 2T
FEF
DAL α:300=x: 2
AX" X=21.06
360
Gradi e Radianti
1
C. ALSHACENTE
IPOTENU

Vedi

Non c'è niente di adatto? Esplorare altre aree tematiche.

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

Knowunity è stata inserita in un articolo di Apple ed è costantemente in cima alle classifiche degli app store nella categoria istruzione in Germania, Italia, Polonia, Svizzera e Regno Unito. Unisciti a Knowunity oggi stesso e aiuta milioni di studenti in tutto il mondo.

Ranked #1 Education App

Scarica

Google Play

Scarica

App Store

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

4.9+

Valutazione media dell'app

15 M

Studenti che usano Knowunity

#1

Nelle classifiche delle app per l'istruzione in 12 Paesi

950 K+

Studenti che hanno caricato appunti

Non siete ancora sicuri? Guarda cosa dicono gli altri studenti...

Utente iOS

Adoro questa applicazione [...] consiglio Knowunity a tutti!!! Sono passato da un 5 a una 8 con questa app

Stefano S, utente iOS

L'applicazione è molto semplice e ben progettata. Finora ho sempre trovato quello che stavo cercando

Susanna, utente iOS

Adoro questa app ❤️, la uso praticamente sempre quando studio.

Aventuras na Circonferência Goniométrica: Seno, Cosseno e Tangente para Crianças

user profile picture

Benedetta

@study.with.bene

·

2 Follower

Segui

The unit circle (Circonferenza goniometrica) is a fundamental tool for understanding trigonometric functions and angle measurements. This comprehensive guide explores the relationships between degrees and radians, seno e coseno formule, and their applications.

  • The unit circle has a radius of 1 and is centered at the origin (0,0)
  • Key angles (0°, 30°, 45°, 60°, 90°) and their corresponding radian measures are explored
  • Trigonometric ratios (seno e coseno tabella) are derived from right triangle relationships
  • The four quadrants demonstrate how signs of trigonometric functions change
  • Fundamental identities like cos²(x) + sin²(x) = 1 are explained

10/6/2022

96

 

4ªl

 

Matematica

7

 ०८
0°
XO
30°
TIL
45°
60° T/3
90° /2
cose
716
180° T
270°
360 2T
FEF
DAL α:300=x: 2
AX" X=21.06
360
Gradi e Radianti
1
C. ALSHACENTE
IPOTENU

Iscriviti per mostrare il contenuto. È gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Trigonometric Values and Special Angles

The second page focuses on the tabella seno e coseno, presenting a comprehensive table of sine and cosine values for special angles in the unit circle. This page is crucial for understanding the circonferenza goniometrica seno e coseno tangente.

Highlight: Special angles include 0°, 30°, 45°, 60°, 90°, 180°, 270°, and 360°.

The table provides exact values for sine and cosine at these angles, which is essential for solving trigonometric problems without a calculator.

Example: At 45°, both sine and cosine equal √2/2.

The page also includes visual representations of these special angles on the unit circle, helping to reinforce the relationship between the angle's position and its trigonometric values.

Vocabulary: Radian - an alternative way to measure angles, where 2π radians equal 360°.

Additionally, the page demonstrates how to calculate trigonometric values for specific angles, such as sin 45° and cos 30°, using the properties of right triangles inscribed in the unit circle.

Iscriviti gratuitamente!

Impara più velocemente e meglio con migliaia di appunti disponibili

App

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

 ०८
0°
XO
30°
TIL
45°
60° T/3
90° /2
cose
716
180° T
270°
360 2T
FEF
DAL α:300=x: 2
AX" X=21.06
360
Gradi e Radianti
1
C. ALSHACENTE
IPOTENU

Iscriviti per mostrare il contenuto. È gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Trigonometric Identities and Quadrants

The third page delves into important trigonometric identities and the behavior of sine and cosine in different quadrants of the coordinate plane. This information is crucial for understanding circonferenza goniometrica formule.

Definition: Trigonometric identities are equations involving trigonometric functions that are true for all values of the variables.

The page presents the fundamental trigonometric identity:

Highlight: cos²(x) + sin²(x) = 1

This identity is the basis for many trigonometric calculations and proofs. The page also provides formulas for expressing sine in terms of cosine and vice versa:

Example: cos(a) = √(1 - sin²(a)) sin(a) = √(1 - cos²(a))

The concept of quadrants is introduced, showing how the signs of sine and cosine change in each quadrant of the coordinate plane. This is essential for solving trigonometric equations and understanding the behavior of trigonometric functions.

Vocabulary: Quadrant - one of four regions in the coordinate plane, divided by the x and y axes.

The page concludes with an example calculating sin(15°) using the half-angle formula and the known value of sin(30°), demonstrating practical application of trigonometric identities.

Example: sin(15°) = sin(30°/2) = 0.5/2 = 0.25

This comprehensive guide provides a solid foundation for understanding the circonferenza goniometrica seno e coseno, essential for students studying trigonometry and circular functions.

Iscriviti gratuitamente!

Impara più velocemente e meglio con migliaia di appunti disponibili

App

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

 ०८
0°
XO
30°
TIL
45°
60° T/3
90° /2
cose
716
180° T
270°
360 2T
FEF
DAL α:300=x: 2
AX" X=21.06
360
Gradi e Radianti
1
C. ALSHACENTE
IPOTENU

Iscriviti per mostrare il contenuto. È gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Unit Circle and Trigonometric Functions

The first page introduces the circonferenza goniometrica, or unit circle, and its key properties. The unit circle is centered at the origin (0,0) with a radius of 1. It demonstrates the relationship between angles and their sine and cosine values.

Definition: The unit circle is a circle with a radius of 1 centered at the origin of a coordinate system.

The page illustrates how angles are measured counterclockwise from the positive x-axis. It shows key angles in both degrees and radians, such as 30°, 45°, 60°, 90°, 180°, 270°, and 360°.

Highlight: The sine of an angle is the y-coordinate on the unit circle, while the cosine is the x-coordinate.

The page also includes formulas for converting between degrees and radians:

Example: To convert from degrees to radians: α = (2π * x) / 360 To convert from radians to degrees: α = (360 * x) / (2π)

Lastly, it provides a visual representation of sine, cosine, and tangent in relation to a right-angled triangle within the unit circle.

Iscriviti gratuitamente!

Impara più velocemente e meglio con migliaia di appunti disponibili

App

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

 ०८
0°
XO
30°
TIL
45°
60° T/3
90° /2
cose
716
180° T
270°
360 2T
FEF
DAL α:300=x: 2
AX" X=21.06
360
Gradi e Radianti
1
C. ALSHACENTE
IPOTENU

Iscriviti per mostrare il contenuto. È gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Iscriviti gratuitamente!

Impara più velocemente e meglio con migliaia di appunti disponibili

App

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Non c'è niente di adatto? Esplorare altre aree tematiche.

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

Knowunity è stata inserita in un articolo di Apple ed è costantemente in cima alle classifiche degli app store nella categoria istruzione in Germania, Italia, Polonia, Svizzera e Regno Unito. Unisciti a Knowunity oggi stesso e aiuta milioni di studenti in tutto il mondo.

Ranked #1 Education App

Scarica

Google Play

Scarica

App Store

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

4.9+

Valutazione media dell'app

15 M

Studenti che usano Knowunity

#1

Nelle classifiche delle app per l'istruzione in 12 Paesi

950 K+

Studenti che hanno caricato appunti

Non siete ancora sicuri? Guarda cosa dicono gli altri studenti...

Utente iOS

Adoro questa applicazione [...] consiglio Knowunity a tutti!!! Sono passato da un 5 a una 8 con questa app

Stefano S, utente iOS

L'applicazione è molto semplice e ben progettata. Finora ho sempre trovato quello che stavo cercando

Susanna, utente iOS

Adoro questa app ❤️, la uso praticamente sempre quando studio.