Materie

Materie

Di più

Scopri i Teoremi sui Triangoli e Formule di Trigonometria

Vedi

Scopri i Teoremi sui Triangoli e Formule di Trigonometria

The trigonometry of triangles is explored, covering key theorems and formulas for both right-angled and general triangles. This comprehensive guide includes:

  • Conventions for labeling triangle elements
  • Theorems for right-angled triangles
  • The Chord Theorem
  • The Law of Sines
  • The Law of Cosines (Carnot's Theorem)
  • Formulas for the circumscribed circle

Highlight: The document provides a concise yet thorough overview of essential trigonometric concepts and their applications to triangles.

29/5/2022

1601

TRIGONOMETRIA
della goniometria ai triangoli.
VERTICI: lettere mainscale
LATI: lettere minuscole.
• ANGOLI: lettere greche
rettangoli)
Ĕ
• C

Vedi

Trigonometry: From Goniometry to Triangles

This page presents a comprehensive overview of trigonometric concepts and their application to triangles. The content is organized to provide a clear understanding of various theorems and formulas essential in trigonometry.

Vocabulary: Goniometry refers to the measurement of angles and the study of angular functions.

The page begins by establishing conventions for labeling triangle elements:

  • Vertices are denoted by uppercase letters
  • Sides are represented by lowercase letters
  • Angles are indicated using Greek letters

Definition: In trigonometry, a right-angled triangle is a triangle containing one 90-degree angle.

The document then proceeds to outline several key theorems:

  1. First Theorem (for right-angled triangles): This theorem likely refers to the basic trigonometric ratios in right-angled triangles, though specific formulas are not provided in the image.

  2. Second Theorem: The following formulas are presented:

    • b = c tan β
    • c = a cos β
    • b = a cos α

Example: In a right-angled triangle, if the hypotenuse (c) is 10 units and angle β is 30°, then side b can be calculated as b = 10 * tan(30°) ≈ 5.77 units.

  1. Chord Theorem: The formula a = 2r sin α is provided, where 'r' likely represents the radius of a circle and 'a' the length of a chord.

  2. Law of Sines: The formula (a / sin α) = (b / sin β) = (c / sin γ) is presented, which is applicable to all triangles.

Highlight: The Law of Sines is a fundamental theorem in trigonometry, allowing for the solution of triangles when certain side lengths and angles are known.

  1. Consequences of the two theorems:

    • The formula (side₁ * side₂) / 2 = r² * sin(included angle) is provided.
    • For an inscribed angle in a semicircle: If ABC is inscribed in a semicircle with AC as the diameter, then angle ABC = 90°.
  2. Carnot's Theorem (Law of Cosines): Three equivalent formulas are presented:

    • b² = a² + c² - 2ac cos β
    • a² = b² + c² - 2bc cos α
    • c² = a² + b² - 2ab cos γ

Vocabulary: The Law of Cosines is also known as the Teorema di Carnot in Italian, named after the French mathematician Lazare Carnot.

The page concludes with a note about 'r' representing the radius of the circumscribed circle of the triangle.

This comprehensive summary covers the essential teoremi sui triangoli rettangoli and teoremi trigonometria triangoli qualsiasi, providing a solid foundation for understanding and applying trigonometric concepts to various triangle problems.

Non c'è niente di adatto? Esplorare altre aree tematiche.

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

Knowunity è stata inserita in un articolo di Apple ed è costantemente in cima alle classifiche degli app store nella categoria istruzione in Germania, Italia, Polonia, Svizzera e Regno Unito. Unisciti a Knowunity oggi stesso e aiuta milioni di studenti in tutto il mondo.

Ranked #1 Education App

Scarica

Google Play

Scarica

App Store

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

4.9+

Valutazione media dell'app

15 M

Studenti che usano Knowunity

#1

Nelle classifiche delle app per l'istruzione in 12 Paesi

950 K+

Studenti che hanno caricato appunti

Non siete ancora sicuri? Guarda cosa dicono gli altri studenti...

Utente iOS

Adoro questa applicazione [...] consiglio Knowunity a tutti!!! Sono passato da un 5 a una 8 con questa app

Stefano S, utente iOS

L'applicazione è molto semplice e ben progettata. Finora ho sempre trovato quello che stavo cercando

Susanna, utente iOS

Adoro questa app ❤️, la uso praticamente sempre quando studio.

Iscriviti per mostrare il contenuto. È gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Scopri i Teoremi sui Triangoli e Formule di Trigonometria

The trigonometry of triangles is explored, covering key theorems and formulas for both right-angled and general triangles. This comprehensive guide includes:

  • Conventions for labeling triangle elements
  • Theorems for right-angled triangles
  • The Chord Theorem
  • The Law of Sines
  • The Law of Cosines (Carnot's Theorem)
  • Formulas for the circumscribed circle

Highlight: The document provides a concise yet thorough overview of essential trigonometric concepts and their applications to triangles.

29/5/2022

1601

 

4ªl

 

Matematica

53

TRIGONOMETRIA
della goniometria ai triangoli.
VERTICI: lettere mainscale
LATI: lettere minuscole.
• ANGOLI: lettere greche
rettangoli)
Ĕ
• C

Trigonometry: From Goniometry to Triangles

This page presents a comprehensive overview of trigonometric concepts and their application to triangles. The content is organized to provide a clear understanding of various theorems and formulas essential in trigonometry.

Vocabulary: Goniometry refers to the measurement of angles and the study of angular functions.

The page begins by establishing conventions for labeling triangle elements:

  • Vertices are denoted by uppercase letters
  • Sides are represented by lowercase letters
  • Angles are indicated using Greek letters

Definition: In trigonometry, a right-angled triangle is a triangle containing one 90-degree angle.

The document then proceeds to outline several key theorems:

  1. First Theorem (for right-angled triangles): This theorem likely refers to the basic trigonometric ratios in right-angled triangles, though specific formulas are not provided in the image.

  2. Second Theorem: The following formulas are presented:

    • b = c tan β
    • c = a cos β
    • b = a cos α

Example: In a right-angled triangle, if the hypotenuse (c) is 10 units and angle β is 30°, then side b can be calculated as b = 10 * tan(30°) ≈ 5.77 units.

  1. Chord Theorem: The formula a = 2r sin α is provided, where 'r' likely represents the radius of a circle and 'a' the length of a chord.

  2. Law of Sines: The formula (a / sin α) = (b / sin β) = (c / sin γ) is presented, which is applicable to all triangles.

Highlight: The Law of Sines is a fundamental theorem in trigonometry, allowing for the solution of triangles when certain side lengths and angles are known.

  1. Consequences of the two theorems:

    • The formula (side₁ * side₂) / 2 = r² * sin(included angle) is provided.
    • For an inscribed angle in a semicircle: If ABC is inscribed in a semicircle with AC as the diameter, then angle ABC = 90°.
  2. Carnot's Theorem (Law of Cosines): Three equivalent formulas are presented:

    • b² = a² + c² - 2ac cos β
    • a² = b² + c² - 2bc cos α
    • c² = a² + b² - 2ab cos γ

Vocabulary: The Law of Cosines is also known as the Teorema di Carnot in Italian, named after the French mathematician Lazare Carnot.

The page concludes with a note about 'r' representing the radius of the circumscribed circle of the triangle.

This comprehensive summary covers the essential teoremi sui triangoli rettangoli and teoremi trigonometria triangoli qualsiasi, providing a solid foundation for understanding and applying trigonometric concepts to various triangle problems.

Non c'è niente di adatto? Esplorare altre aree tematiche.

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

Knowunity è stata inserita in un articolo di Apple ed è costantemente in cima alle classifiche degli app store nella categoria istruzione in Germania, Italia, Polonia, Svizzera e Regno Unito. Unisciti a Knowunity oggi stesso e aiuta milioni di studenti in tutto il mondo.

Ranked #1 Education App

Scarica

Google Play

Scarica

App Store

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

4.9+

Valutazione media dell'app

15 M

Studenti che usano Knowunity

#1

Nelle classifiche delle app per l'istruzione in 12 Paesi

950 K+

Studenti che hanno caricato appunti

Non siete ancora sicuri? Guarda cosa dicono gli altri studenti...

Utente iOS

Adoro questa applicazione [...] consiglio Knowunity a tutti!!! Sono passato da un 5 a una 8 con questa app

Stefano S, utente iOS

L'applicazione è molto semplice e ben progettata. Finora ho sempre trovato quello che stavo cercando

Susanna, utente iOS

Adoro questa app ❤️, la uso praticamente sempre quando studio.