Apri l'app

Materie

Trigonometria: Formule Seno, Coseno e Tangente + Teoremi e Grafici

Apri

39

0

user profile picture

rob๐Ÿชด

02/10/2022

Matematica

Trigonometria

Trigonometria: Formule Seno, Coseno e Tangente + Teoremi e Grafici

La trigonometria รจ lo studio dei rapporti tra i lati e gli angoli dei triangoli. Questo documento fornisce una panoramica completa delle formule e dei concetti fondamentali della trigonometria, inclusi seno, coseno, tangente, teoremi e grafici delle funzioni goniometriche.

โ€ข Le formule trigonometriche di base includono le relazioni tra seno, coseno e tangente
โ€ข Vengono presentati i grafici delle funzioni goniometriche come seno, coseno e tangente
โ€ข Si spiegano importanti teoremi come il teorema del coseno e il teorema dei seni
โ€ข Sono incluse definizioni, esempi e dimostrazioni per chiarire i concetti chiave

...

02/10/2022

1246

trigonometria
A
DEFINIZIONI
casa
Sina=
tana= a
6โ‚‚
b
b
b
RELAZIONI FONDAMENTALI
(Sina)2+ Ccasas ยฒ =1
tand sina
cosa
TEORIA
cos.co
sindo
Dimos

Vedi

Grafici delle Funzioni Goniometriche

Questa pagina si concentra sui grafici delle funzioni goniometriche, in particolare seno e coseno. Vengono illustrate le caratteristiche principali di questi grafici e come si modificano in seguito a trasformazioni.

Highlight: I grafici di seno e coseno sono periodici, con periodo 2ฯ€, e hanno un'ampiezza che varia tra -1 e 1.

La pagina spiega come le funzioni trigonometriche possono essere modificate attraverso traslazioni, compressioni, dilatazioni e riflessioni. Vengono forniti esempi specifici per illustrare questi concetti.

Esempio: La funzione y = sinxโˆ’1x-1 rappresenta una traslazione orizzontale del grafico di y = sinxx di 1 unitร  verso destra.

Viene spiegato come interpretare le equazioni delle funzioni trigonometriche modificate, come y = 2sinxx - 1, che rappresenta una dilatazione verticale seguita da una traslazione verso il basso.

Vocabulary: La compressione orizzontale si verifica quando il coefficiente dell'argomento della funzione trigonometrica รจ maggiore di 1, mentre la dilatazione orizzontale si verifica quando รจ minore di 1.

La pagina include anche una discussione sul valore assoluto applicato alle funzioni trigonometriche e come questo influenzi il grafico risultante.

trigonometria
A
DEFINIZIONI
casa
Sina=
tana= a
6โ‚‚
b
b
b
RELAZIONI FONDAMENTALI
(Sina)2+ Ccasas ยฒ =1
tand sina
cosa
TEORIA
cos.co
sindo
Dimos

Vedi

Grafico della Tangente e Trasformazioni

Questa pagina si concentra sul grafico della tangente e sulle trasformazioni delle funzioni trigonometriche. Viene spiegato come costruire e interpretare il grafico della tangente, evidenziando le sue caratteristiche uniche.

Highlight: Il grafico della tangente ha asintoti verticali in corrispondenza dei punti dove il coseno si annulla, cioรจ per x = ฯ€/2 + kฯ€, dove k รจ un intero.

La pagina fornisce istruzioni dettagliate su come applicare trasformazioni alle funzioni trigonometriche, incluse traslazioni, compressioni e dilatazioni. Viene enfatizzata l'importanza dell'ordine in cui si applicano queste trasformazioni.

Esempio: Per graficare y = cos2x+ฯ€2x + ฯ€, si deve prima comprimere orizzontalmente il grafico di un fattore 2, poi traslarlo di ฯ€/2 unitร  verso sinistra.

Vengono discusse le proprietร  di simmetria delle funzioni trigonometriche, come la paritร  del coseno e la disparitร  del seno e della tangente.

Vocabulary: Una funzione si dice pari se fโˆ’x-x = fxx per ogni x, mentre si dice dispari se fโˆ’x-x = -fxx per ogni x.

La pagina conclude con un'analisi dettagliata del grafico della tangente, sottolineando come esso differisca dai grafici del seno e del coseno.

Quote: "La tangente non ha picchi o valli, ma รจ intervallata a tratti tra gli asintoti verticali."

Questo approccio dettagliato alla trigonometria fornisce agli studenti una solida base per comprendere e applicare questi concetti fondamentali in matematica e fisica.

Non c'รจ niente di adatto? Esplorare altre aree tematiche.

Knowunity รจ l'app per l'istruzione numero 1 in cinque paesi europei

Knowunity รจ stata inserita in un articolo di Apple ed รจ costantemente in cima alle classifiche degli app store nella categoria istruzione in Germania, Italia, Polonia, Svizzera e Regno Unito. Unisciti a Knowunity oggi stesso e aiuta milioni di studenti in tutto il mondo.

Ranked #1 Education App

Scarica

Google Play

Scarica

App Store

Knowunity รจ l'app per l'istruzione numero 1 in cinque paesi europei

4.9+

Valutazione media dell'app

21 M

Studenti che usano Knowunity

#1

Nelle classifiche delle app per l'istruzione in 17 Paesi

950 K+

Studenti che hanno caricato appunti

Non siete ancora sicuri? Guarda cosa dicono gli altri studenti...

Utente iOS

Adoro questa applicazione [...] consiglio Knowunity a tutti!!! Sono passato da un 5 a una 8 con questa app

Stefano S, utente iOS

L'applicazione รจ molto semplice e ben progettata. Finora ho sempre trovato quello che stavo cercando

Susanna, utente iOS

Adoro questa app โค๏ธ, la uso praticamente sempre quando studio.

ย 

Matematica

โ€ข

1246

โ€ข

2 ott 2022

โ€ข

3 pagine

Trigonometria: Formule Seno, Coseno e Tangente + Teoremi e Grafici

user profile picture

rob๐Ÿชด

@robertoghittino

La trigonometria รจ lo studio dei rapporti tra i lati e gli angoli dei triangoli. Questo documento fornisce una panoramica completa delle formule e dei concetti fondamentali della trigonometria, inclusi seno, coseno, tangente, teoremi e grafici delle funzioni goniometriche.

โ€ข... Mostra di piรน

trigonometria
A
DEFINIZIONI
casa
Sina=
tana= a
6โ‚‚
b
b
b
RELAZIONI FONDAMENTALI
(Sina)2+ Ccasas ยฒ =1
tand sina
cosa
TEORIA
cos.co
sindo
Dimos

Iscriviti per mostrare il contenutoรˆ gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Grafici delle Funzioni Goniometriche

Questa pagina si concentra sui grafici delle funzioni goniometriche, in particolare seno e coseno. Vengono illustrate le caratteristiche principali di questi grafici e come si modificano in seguito a trasformazioni.

Highlight: I grafici di seno e coseno sono periodici, con periodo 2ฯ€, e hanno un'ampiezza che varia tra -1 e 1.

La pagina spiega come le funzioni trigonometriche possono essere modificate attraverso traslazioni, compressioni, dilatazioni e riflessioni. Vengono forniti esempi specifici per illustrare questi concetti.

Esempio: La funzione y = sinxโˆ’1x-1 rappresenta una traslazione orizzontale del grafico di y = sinxx di 1 unitร  verso destra.

Viene spiegato come interpretare le equazioni delle funzioni trigonometriche modificate, come y = 2sinxx - 1, che rappresenta una dilatazione verticale seguita da una traslazione verso il basso.

Vocabulary: La compressione orizzontale si verifica quando il coefficiente dell'argomento della funzione trigonometrica รจ maggiore di 1, mentre la dilatazione orizzontale si verifica quando รจ minore di 1.

La pagina include anche una discussione sul valore assoluto applicato alle funzioni trigonometriche e come questo influenzi il grafico risultante.

Iscriviti per mostrare il contenutoรˆ gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Grafico della Tangente e Trasformazioni

Questa pagina si concentra sul grafico della tangente e sulle trasformazioni delle funzioni trigonometriche. Viene spiegato come costruire e interpretare il grafico della tangente, evidenziando le sue caratteristiche uniche.

Highlight: Il grafico della tangente ha asintoti verticali in corrispondenza dei punti dove il coseno si annulla, cioรจ per x = ฯ€/2 + kฯ€, dove k รจ un intero.

La pagina fornisce istruzioni dettagliate su come applicare trasformazioni alle funzioni trigonometriche, incluse traslazioni, compressioni e dilatazioni. Viene enfatizzata l'importanza dell'ordine in cui si applicano queste trasformazioni.

Esempio: Per graficare y = cos2x+ฯ€2x + ฯ€, si deve prima comprimere orizzontalmente il grafico di un fattore 2, poi traslarlo di ฯ€/2 unitร  verso sinistra.

Vengono discusse le proprietร  di simmetria delle funzioni trigonometriche, come la paritร  del coseno e la disparitร  del seno e della tangente.

Vocabulary: Una funzione si dice pari se fโˆ’x-x = fxx per ogni x, mentre si dice dispari se fโˆ’x-x = -fxx per ogni x.

La pagina conclude con un'analisi dettagliata del grafico della tangente, sottolineando come esso differisca dai grafici del seno e del coseno.

Quote: "La tangente non ha picchi o valli, ma รจ intervallata a tratti tra gli asintoti verticali."

Questo approccio dettagliato alla trigonometria fornisce agli studenti una solida base per comprendere e applicare questi concetti fondamentali in matematica e fisica.

Iscriviti per mostrare il contenutoรˆ gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Definizioni e Relazioni Fondamentali della Trigonometria

Questa pagina introduce i concetti di base della trigonometria, fornendo definizioni e relazioni fondamentali. Le funzioni trigonometriche seno, coseno e tangente sono definite in relazione ai lati di un triangolo rettangolo.

Definizione: Il seno di un angolo รจ il rapporto tra il cateto opposto e l'ipotenusa, il coseno รจ il rapporto tra il cateto adiacente e l'ipotenusa, mentre la tangente รจ il rapporto tra il cateto opposto e il cateto adiacente.

Vengono presentate le relazioni fondamentali della trigonometria, come l'identitร  fondamentale sinยฒฮฑ + cosยฒฮฑ = 1.

Highlight: La circonferenza goniometrica, un cerchio unitario con raggio 1, รจ uno strumento fondamentale per visualizzare e comprendere le funzioni trigonometriche.

Il teorema del coseno e il teorema dei seni sono introdotti come importanti strumenti per risolvere triangoli non rettangoli.

Esempio: Il teorema del coseno stabilisce che in un triangolo qualsiasi, aยฒ = bยฒ + cยฒ - 2bc cosฮฑ, dove a, b, c sono i lati e ฮฑ รจ l'angolo opposto al lato a.

La pagina include anche una sezione sugli angoli in radianti, spiegando la relazione tra gradi e radianti e come rappresentare gli angoli sulla circonferenza goniometrica.

Vocabulary: Un radiante รจ definito come l'angolo al centro che sottende un arco di lunghezza pari al raggio della circonferenza.

Infine, viene presentata una tabella con i valori di seno, coseno e tangente per alcuni angoli notevoli 0ยฐ,30ยฐ,45ยฐ,60ยฐ,90ยฐ0ยฐ, 30ยฐ, 45ยฐ, 60ยฐ, 90ยฐ, fornendo un utile riferimento per calcoli rapidi.

Non c'รจ niente di adatto? Esplorare altre aree tematiche.

Recensioni dei nostri utenti. Ci adorano - e anche tu, vedrai .

4.9/5

App Store

4.8/5

Google Play

L'applicazione รจ molto facile da usare e ben progettata. Finora ho trovato tutto quello che cercavo e ho potuto imparare molto dalle presentazioni! Utilizzerรฒ sicuramente l'app per i compiti in classe! รˆ molto utile anche come fonte di ispirazione.

Stefano S

utente iOS

Questa applicazione รจ davvero grande! Ci sono tantissimi appunti e aiuti con lo studio [...]. La mia materia problematica, per esempio, รจ il francese e l'app ha cosรฌ tante opzioni per aiutarmi. Grazie a questa app ho migliorato il mio francese. La consiglio a tutti.

Samantha Klich

utente Android

Wow, sono davvero stupita. Ho appena provato l'app perchรฉ l'ho vista pubblicizzata molte volte e sono rimasta assolutamente sbalordita. Questa app รจ L'AIUTO che cercate per la scuola e soprattutto offre tantissime cose, come allenamenti e schede, che a me personalmente sono state MOLTO utili.

Anna

utente iOS

รˆ bellissima questa app, la adoro. รˆ utilissima per lo studio e mi aiuta molto, anzi moltissimo, ma soprattutto mi aiutano molto i quiz, per memorizzare anche quello che non sapevo

Anastasia

utente Android

Fantastica per qualsiasi materia avere gli appunti anche di altre persone รจ molto utile perchรจ posso confrontarmi e vedere come migliorarmi. con i quiz riesco ad apprendere al meglio.

Francesca

utente Android

moooolto utile,gli appunti sono belli e funzionanti,schoolGPT da dei consigli formidabili!!

Marianna

utente Android

L'applicazione รจ semplicemente fantastica! Tutto ciรฒ che devo fare รจ inserire l'argomento nella barra di ricerca e ottengo la risposta molto velocemente. Non devo guardare 10 video di YouTube per capire qualcosa, quindi risparmio tempo. Consigliatissima!

Sudenaz Ocak

utente Android

A scuola andavo malissimo in matematica, ma grazie a questa applicazione ora vado meglio. Vi sono molto grato per aver creato questa app.

Greenlight Bonnie

utente Android

Knowunity รจ un applicazione fantastica,considerando che ha degli schemi veramente molto carini e sfiziosi e che ci sono dei quiz,oltre al fatto che questa cosa dell intelligenza artificiale "school gpt" รจ almeno per me molto utile, perchรฉ a differenza di Chatgpt ti da le spiegazioni, ti spiega ciรฒ che non รจ chiaro! Posso studiare piรน velocemente tramite gli schemi e che posso pubblicare io stessa gli schemi รจ una funzione utilissima per gli altri studenti. Knowunity รจ PERFETTA

Aurora

utente Android

Lโ€™app funziona benissimo e puoi trovare qualsiasi tipo di informazione. Non ho lโ€™abbonamento ma la parte gratuita รจ sufficiente per uno studio approfondito.

Martina

utente iOS

in questi ultimi mesi di scuola dove il tempo รจ ormai poco, mi sta aiutando molto perchรฉ piuttosto che farmi io gli schemi su quello che leggo sul libro guardo questi giร  fatti e li uso come ripasso piuttosto che rileggermi tutto il libro

Chiara

utente IOS

Questa app รจ una delle migliori, nientโ€™altro da dire.

Andrea

utente iOS

L'applicazione รจ molto facile da usare e ben progettata. Finora ho trovato tutto quello che cercavo e ho potuto imparare molto dalle presentazioni! Utilizzerรฒ sicuramente l'app per i compiti in classe! รˆ molto utile anche come fonte di ispirazione.

Stefano S

utente iOS

Questa applicazione รจ davvero grande! Ci sono tantissimi appunti e aiuti con lo studio [...]. La mia materia problematica, per esempio, รจ il francese e l'app ha cosรฌ tante opzioni per aiutarmi. Grazie a questa app ho migliorato il mio francese. La consiglio a tutti.

Samantha Klich

utente Android

Wow, sono davvero stupita. Ho appena provato l'app perchรฉ l'ho vista pubblicizzata molte volte e sono rimasta assolutamente sbalordita. Questa app รจ L'AIUTO che cercate per la scuola e soprattutto offre tantissime cose, come allenamenti e schede, che a me personalmente sono state MOLTO utili.

Anna

utente iOS

รˆ bellissima questa app, la adoro. รˆ utilissima per lo studio e mi aiuta molto, anzi moltissimo, ma soprattutto mi aiutano molto i quiz, per memorizzare anche quello che non sapevo

Anastasia

utente Android

Fantastica per qualsiasi materia avere gli appunti anche di altre persone รจ molto utile perchรจ posso confrontarmi e vedere come migliorarmi. con i quiz riesco ad apprendere al meglio.

Francesca

utente Android

moooolto utile,gli appunti sono belli e funzionanti,schoolGPT da dei consigli formidabili!!

Marianna

utente Android

L'applicazione รจ semplicemente fantastica! Tutto ciรฒ che devo fare รจ inserire l'argomento nella barra di ricerca e ottengo la risposta molto velocemente. Non devo guardare 10 video di YouTube per capire qualcosa, quindi risparmio tempo. Consigliatissima!

Sudenaz Ocak

utente Android

A scuola andavo malissimo in matematica, ma grazie a questa applicazione ora vado meglio. Vi sono molto grato per aver creato questa app.

Greenlight Bonnie

utente Android

Knowunity รจ un applicazione fantastica,considerando che ha degli schemi veramente molto carini e sfiziosi e che ci sono dei quiz,oltre al fatto che questa cosa dell intelligenza artificiale "school gpt" รจ almeno per me molto utile, perchรฉ a differenza di Chatgpt ti da le spiegazioni, ti spiega ciรฒ che non รจ chiaro! Posso studiare piรน velocemente tramite gli schemi e che posso pubblicare io stessa gli schemi รจ una funzione utilissima per gli altri studenti. Knowunity รจ PERFETTA

Aurora

utente Android

Lโ€™app funziona benissimo e puoi trovare qualsiasi tipo di informazione. Non ho lโ€™abbonamento ma la parte gratuita รจ sufficiente per uno studio approfondito.

Martina

utente iOS

in questi ultimi mesi di scuola dove il tempo รจ ormai poco, mi sta aiutando molto perchรฉ piuttosto che farmi io gli schemi su quello che leggo sul libro guardo questi giร  fatti e li uso come ripasso piuttosto che rileggermi tutto il libro

Chiara

utente IOS

Questa app รจ una delle migliori, nientโ€™altro da dire.

Andrea

utente iOS