Materie

Materie

Di più

Formulario Matematica Completo PDF: Dalle Medie all'Università con Teoremi e Limiti

Vedi

Formulario Matematica Completo PDF: Dalle Medie all'Università con Teoremi e Limiti
user profile picture

Francesca Giunta

@francyy.giu

·

36 Follower

Segui

This comprehensive guide covers key concepts in calculus, including limits, derivatives, and integrals. It provides essential formulas, theorems, and techniques for solving mathematical problems in analysis.

18/6/2023

7029

I LIMITI
●
●
0
∞
• live
X-700
віли е
X +00
+0个 X
0; £=
lim
x-0
• lim log /1/2
lim
x-0
X
• lim [lu(x)]:
x = 0+
= 1;
Limiti notevoli
sinx
lim

Vedi

Theorems and Function Analysis

This page covers important theorems in calculus and techniques for analyzing functions.

Key Theorems

The page presents several fundamental theorems:

  • Rolle's Theorem
  • Mean Value Theorem (Lagrange's Theorem)
  • Cauchy's Mean Value Theorem

Definition: Rolle's Theorem states that for a continuous function f(x) on [a,b] with f(a) = f(b), there exists c in (a,b) where f'(c) = 0.

Function Analysis Techniques

Methods for analyzing functions are provided:

  • Finding domain and intervals
  • Determining increasing/decreasing intervals using derivatives
  • Identifying asymptotes (vertical, horizontal, oblique)

Example: To find a horizontal asymptote, calculate lim(x→∞) f(x)

L'Hôpital's Rule

The page explains L'Hôpital's Rule for evaluating limits of indeterminate forms.

Highlight: L'Hôpital's Rule states that for limits of the form 0/0 or ∞/∞, the limit of the quotient equals the limit of the quotient of derivatives.

Concavity and Inflection Points

Techniques are provided for:

  • Finding stationary points
  • Determining concavity using the second derivative
  • Identifying inflection points

Vocabulary: An inflection point occurs where the concavity of a function changes.

I LIMITI
●
●
0
∞
• live
X-700
віли е
X +00
+0个 X
0; £=
lim
x-0
• lim log /1/2
lim
x-0
X
• lim [lu(x)]:
x = 0+
= 1;
Limiti notevoli
sinx
lim

Vedi

Indefinite Integrals

This page covers techniques for solving indefinite integrals.

Basic Integration Formulas

The page provides formulas for integrating:

  • Power functions
  • Exponential and logarithmic functions
  • Trigonometric functions

Example: ∫ sin x dx = -cos x + C

Integration Methods

Key integration techniques are explained:

  • Substitution method
  • Integration by parts

Definition: Integration by parts uses the formula: ∫ f'(x)g(x)dx = f(x)g(x) - ∫ f(x)g'(x)dx

Integrating Rational Functions

The page covers techniques for integrating rational functions, including:

  • Partial fraction decomposition
  • Long division of polynomials

Highlight: Partial fraction decomposition is used when the degree of the numerator is less than the degree of the denominator.

Trigonometric Substitutions

Special substitutions are provided for integrals involving:

  • √(1-x²)
  • √(1+x²)
  • √(x²-1)

Vocabulary: Trigonometric substitutions transform an integral into one involving trigonometric functions.

I LIMITI
●
●
0
∞
• live
X-700
віли е
X +00
+0个 X
0; £=
lim
x-0
• lim log /1/2
lim
x-0
X
• lim [lu(x)]:
x = 0+
= 1;
Limiti notevoli
sinx
lim

Vedi

Definite Integrals

This final page covers definite integrals and their applications.

Fundamental Theorem of Calculus

The page presents the Fundamental Theorem of Calculus, relating definite integrals to antiderivatives:

∫[a to b] f(x)dx = F(b) - F(a)

Where F(x) is an antiderivative of f(x).

Highlight: The Fundamental Theorem of Calculus provides a powerful method for evaluating definite integrals.

Area Calculation

Techniques are provided for calculating areas using definite integrals:

  • Area between a curve and the x-axis
  • Area between two curves

Example: The area between f(x) and g(x) from a to b is given by: ∫[a to b] [f(x) - g(x)]dx

Integration Techniques for Definite Integrals

The page reviews integration techniques in the context of definite integrals:

  • Substitution method
  • Integration by parts

Vocabulary: When using substitution in a definite integral, the limits of integration must be adjusted accordingly.

Trigonometric Integrals

Special techniques are provided for integrating products of sine and cosine functions.

Definition: A trigonometric integral involves products of sine and cosine functions, often solved using half-angle formulas or substitutions.

This comprehensive guide covers essential topics in calculus, providing a valuable resource for students preparing for exams or seeking to master key concepts in mathematical analysis.

I LIMITI
●
●
0
∞
• live
X-700
віли е
X +00
+0个 X
0; £=
lim
x-0
• lim log /1/2
lim
x-0
X
• lim [lu(x)]:
x = 0+
= 1;
Limiti notevoli
sinx
lim

Vedi

Limits and Derivatives

This page covers fundamental concepts in calculus related to limits and derivatives.

Key Limit Formulas

The page presents several important limit formulas, including:

  • Limits of trigonometric functions as x approaches 0
  • Limits involving exponential and logarithmic functions
  • Limits of indeterminate forms

Example: lim(x→0) (sin x)/x = 1

Derivative Rules

Basic derivative rules are provided for:

  • Power functions
  • Exponential and logarithmic functions
  • Trigonometric functions

Definition: The derivative f'(x) represents the slope of the tangent line to f(x) at a point.

Derivative Techniques

The page covers key techniques for finding derivatives:

  • Product rule
  • Quotient rule
  • Chain rule

Highlight: The chain rule allows differentiating composite functions: D[f(g(x))] = f'(g(x)) · g'(x)

Points of Non-Differentiability

Types of non-differentiable points are explained:

  • Vertical tangent
  • Cusp
  • Corner point

Vocabulary: A cusp occurs when left and right derivatives are infinite with opposite signs.

Non c'è niente di adatto? Esplorare altre aree tematiche.

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

Knowunity è stata inserita in un articolo di Apple ed è costantemente in cima alle classifiche degli app store nella categoria istruzione in Germania, Italia, Polonia, Svizzera e Regno Unito. Unisciti a Knowunity oggi stesso e aiuta milioni di studenti in tutto il mondo.

Ranked #1 Education App

Scarica

Google Play

Scarica

App Store

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

4.9+

Valutazione media dell'app

15 M

Studenti che usano Knowunity

#1

Nelle classifiche delle app per l'istruzione in 12 Paesi

950 K+

Studenti che hanno caricato appunti

Non siete ancora sicuri? Guarda cosa dicono gli altri studenti...

Utente iOS

Adoro questa applicazione [...] consiglio Knowunity a tutti!!! Sono passato da un 5 a una 8 con questa app

Stefano S, utente iOS

L'applicazione è molto semplice e ben progettata. Finora ho sempre trovato quello che stavo cercando

Susanna, utente iOS

Adoro questa app ❤️, la uso praticamente sempre quando studio.

Formulario Matematica Completo PDF: Dalle Medie all'Università con Teoremi e Limiti

user profile picture

Francesca Giunta

@francyy.giu

·

36 Follower

Segui

This comprehensive guide covers key concepts in calculus, including limits, derivatives, and integrals. It provides essential formulas, theorems, and techniques for solving mathematical problems in analysis.

18/6/2023

7029

 

5ªl

 

Matematica

313

I LIMITI
●
●
0
∞
• live
X-700
віли е
X +00
+0个 X
0; £=
lim
x-0
• lim log /1/2
lim
x-0
X
• lim [lu(x)]:
x = 0+
= 1;
Limiti notevoli
sinx
lim

Iscriviti per mostrare il contenuto. È gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Theorems and Function Analysis

This page covers important theorems in calculus and techniques for analyzing functions.

Key Theorems

The page presents several fundamental theorems:

  • Rolle's Theorem
  • Mean Value Theorem (Lagrange's Theorem)
  • Cauchy's Mean Value Theorem

Definition: Rolle's Theorem states that for a continuous function f(x) on [a,b] with f(a) = f(b), there exists c in (a,b) where f'(c) = 0.

Function Analysis Techniques

Methods for analyzing functions are provided:

  • Finding domain and intervals
  • Determining increasing/decreasing intervals using derivatives
  • Identifying asymptotes (vertical, horizontal, oblique)

Example: To find a horizontal asymptote, calculate lim(x→∞) f(x)

L'Hôpital's Rule

The page explains L'Hôpital's Rule for evaluating limits of indeterminate forms.

Highlight: L'Hôpital's Rule states that for limits of the form 0/0 or ∞/∞, the limit of the quotient equals the limit of the quotient of derivatives.

Concavity and Inflection Points

Techniques are provided for:

  • Finding stationary points
  • Determining concavity using the second derivative
  • Identifying inflection points

Vocabulary: An inflection point occurs where the concavity of a function changes.

Iscriviti gratuitamente!

Impara più velocemente e meglio con migliaia di appunti disponibili

App

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

I LIMITI
●
●
0
∞
• live
X-700
віли е
X +00
+0个 X
0; £=
lim
x-0
• lim log /1/2
lim
x-0
X
• lim [lu(x)]:
x = 0+
= 1;
Limiti notevoli
sinx
lim

Iscriviti per mostrare il contenuto. È gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Indefinite Integrals

This page covers techniques for solving indefinite integrals.

Basic Integration Formulas

The page provides formulas for integrating:

  • Power functions
  • Exponential and logarithmic functions
  • Trigonometric functions

Example: ∫ sin x dx = -cos x + C

Integration Methods

Key integration techniques are explained:

  • Substitution method
  • Integration by parts

Definition: Integration by parts uses the formula: ∫ f'(x)g(x)dx = f(x)g(x) - ∫ f(x)g'(x)dx

Integrating Rational Functions

The page covers techniques for integrating rational functions, including:

  • Partial fraction decomposition
  • Long division of polynomials

Highlight: Partial fraction decomposition is used when the degree of the numerator is less than the degree of the denominator.

Trigonometric Substitutions

Special substitutions are provided for integrals involving:

  • √(1-x²)
  • √(1+x²)
  • √(x²-1)

Vocabulary: Trigonometric substitutions transform an integral into one involving trigonometric functions.

Iscriviti gratuitamente!

Impara più velocemente e meglio con migliaia di appunti disponibili

App

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

I LIMITI
●
●
0
∞
• live
X-700
віли е
X +00
+0个 X
0; £=
lim
x-0
• lim log /1/2
lim
x-0
X
• lim [lu(x)]:
x = 0+
= 1;
Limiti notevoli
sinx
lim

Iscriviti per mostrare il contenuto. È gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Definite Integrals

This final page covers definite integrals and their applications.

Fundamental Theorem of Calculus

The page presents the Fundamental Theorem of Calculus, relating definite integrals to antiderivatives:

∫[a to b] f(x)dx = F(b) - F(a)

Where F(x) is an antiderivative of f(x).

Highlight: The Fundamental Theorem of Calculus provides a powerful method for evaluating definite integrals.

Area Calculation

Techniques are provided for calculating areas using definite integrals:

  • Area between a curve and the x-axis
  • Area between two curves

Example: The area between f(x) and g(x) from a to b is given by: ∫[a to b] [f(x) - g(x)]dx

Integration Techniques for Definite Integrals

The page reviews integration techniques in the context of definite integrals:

  • Substitution method
  • Integration by parts

Vocabulary: When using substitution in a definite integral, the limits of integration must be adjusted accordingly.

Trigonometric Integrals

Special techniques are provided for integrating products of sine and cosine functions.

Definition: A trigonometric integral involves products of sine and cosine functions, often solved using half-angle formulas or substitutions.

This comprehensive guide covers essential topics in calculus, providing a valuable resource for students preparing for exams or seeking to master key concepts in mathematical analysis.

Iscriviti gratuitamente!

Impara più velocemente e meglio con migliaia di appunti disponibili

App

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

I LIMITI
●
●
0
∞
• live
X-700
віли е
X +00
+0个 X
0; £=
lim
x-0
• lim log /1/2
lim
x-0
X
• lim [lu(x)]:
x = 0+
= 1;
Limiti notevoli
sinx
lim

Iscriviti per mostrare il contenuto. È gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Limits and Derivatives

This page covers fundamental concepts in calculus related to limits and derivatives.

Key Limit Formulas

The page presents several important limit formulas, including:

  • Limits of trigonometric functions as x approaches 0
  • Limits involving exponential and logarithmic functions
  • Limits of indeterminate forms

Example: lim(x→0) (sin x)/x = 1

Derivative Rules

Basic derivative rules are provided for:

  • Power functions
  • Exponential and logarithmic functions
  • Trigonometric functions

Definition: The derivative f'(x) represents the slope of the tangent line to f(x) at a point.

Derivative Techniques

The page covers key techniques for finding derivatives:

  • Product rule
  • Quotient rule
  • Chain rule

Highlight: The chain rule allows differentiating composite functions: D[f(g(x))] = f'(g(x)) · g'(x)

Points of Non-Differentiability

Types of non-differentiable points are explained:

  • Vertical tangent
  • Cusp
  • Corner point

Vocabulary: A cusp occurs when left and right derivatives are infinite with opposite signs.

Iscriviti gratuitamente!

Impara più velocemente e meglio con migliaia di appunti disponibili

App

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Non c'è niente di adatto? Esplorare altre aree tematiche.

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

Knowunity è stata inserita in un articolo di Apple ed è costantemente in cima alle classifiche degli app store nella categoria istruzione in Germania, Italia, Polonia, Svizzera e Regno Unito. Unisciti a Knowunity oggi stesso e aiuta milioni di studenti in tutto il mondo.

Ranked #1 Education App

Scarica

Google Play

Scarica

App Store

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

4.9+

Valutazione media dell'app

15 M

Studenti che usano Knowunity

#1

Nelle classifiche delle app per l'istruzione in 12 Paesi

950 K+

Studenti che hanno caricato appunti

Non siete ancora sicuri? Guarda cosa dicono gli altri studenti...

Utente iOS

Adoro questa applicazione [...] consiglio Knowunity a tutti!!! Sono passato da un 5 a una 8 con questa app

Stefano S, utente iOS

L'applicazione è molto semplice e ben progettata. Finora ho sempre trovato quello che stavo cercando

Susanna, utente iOS

Adoro questa app ❤️, la uso praticamente sempre quando studio.