Materie

Materie

Di più

Scopriamo la Retta Tangente e la Derivata: Esempi e Formule Facili!

Vedi

Scopriamo la Retta Tangente e la Derivata: Esempi e Formule Facili!

The document provides a comprehensive overview of derivatives in calculus, focusing on tangent lines, incremental ratios, and derivative rules. It covers the geometric interpretation of derivatives, derivability conditions, and formulas for various functions including trigonometric and inverse functions. The material is suitable for students studying calculus and mathematical analysis.

• Key topics include retta tangente formula, rapporto incrementale formula, and derivata funzione inversa.
• The document explains the concept of limits in relation to derivatives and tangent lines.
• It provides detailed derivations and proofs for important theorems and formulas.
• Examples and geometric interpretations are used to illustrate abstract concepts.

12/9/2022

119

DERIVATE
Retta tg a y = f(x) in un suo punto P
YP
eg fas. rette perp In alcuni casi sappiamo gra' come procedere
(nella para bola)
10eq. √4=

Vedi

Incremental Ratio and Derivability

This page delves deeper into the concept of the incremental ratio and introduces the formal definition of derivability. It explains the geometric interpretation of the incremental ratio and its relation to the slope of the secant line.

The page defines the incremental ratio as:

Formula: [f(x₀+h) - f(x₀)] / h

Where h represents the increment of the independent variable.

Vocabulary: The incremental ratio is also known as the rapporto incrementale in Italian.

The page then provides the formal definition of derivability:

Definition: A function f(x) is derivable at a point x₀ if:

  1. It is defined in a neighborhood of x₀
  2. The limit of the incremental ratio exists and is finite as h approaches 0

The page also introduces an important theorem:

Theorem: If f(x) is derivable at x₀, then it is continuous at x₀.

This theorem highlights the relationship between derivability and continuity, which is crucial for understanding the definizione di derivata.

Example: The geometric representation of the incremental ratio is the slope of the secant line passing through points P and Q on the function's graph.

DERIVATE
Retta tg a y = f(x) in un suo punto P
YP
eg fas. rette perp In alcuni casi sappiamo gra' come procedere
(nella para bola)
10eq. √4=

Vedi

Derivative Rules and Formulas

This page provides a comprehensive list of derivative rules and formulas for various functions. It includes derivatives of basic functions, trigonometric functions, and exponential functions.

Some key derivative formulas presented are:

Formula:

  • D[x^n] = nx^(n-1)
  • D[sin x] = cos x
  • D[e^x] = e^x
  • D[ln x] = 1/x

The page also introduces more complex derivative rules, such as the product rule and the quotient rule:

Formula:

  • Product Rule: D[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)
  • Quotient Rule: D[f(x)/g(x)] = [f'(x)g(x) - f(x)g'(x)] / [g(x)^2]

These rules are essential for calculating derivatives of more complex functions and are crucial for understanding derivata funzione composta.

Highlight: The product and quotient rules allow for the calculation of derivatives for a wide range of complex functions.

DERIVATE
Retta tg a y = f(x) in un suo punto P
YP
eg fas. rette perp In alcuni casi sappiamo gra' come procedere
(nella para bola)
10eq. √4=

Vedi

Inverse Functions and Angles Between Curves

This final page focuses on the derivatives of inverse trigonometric functions and introduces the concept of angles between curves.

The page provides formulas for the derivatives of inverse trigonometric functions:

Formula:

  • D[arcsin x] = 1 / √(1-x^2)
  • D[arccos x] = -1 / √(1-x^2)
  • D[arctan x] = 1 / (1+x^2)
  • D[arccot x] = -1 / (1+x^2)

These formulas are crucial for understanding derivata funzione inversa esempi and derivata della funzione inversa esercizi svolti.

The page concludes with a discussion on finding the angle between two curves at their intersection point. It provides the formula:

Formula: tan θ = |m₁ - m₂| / (1 + m₁m₂)

Where m₁ and m₂ are the slopes of the tangent lines to the curves at the intersection point.

Highlight: The concept of angles between curves has important applications in geometry and physics, particularly in understanding the behavior of intersecting paths or trajectories.

DERIVATE
Retta tg a y = f(x) in un suo punto P
YP
eg fas. rette perp In alcuni casi sappiamo gra' come procedere
(nella para bola)
10eq. √4=

Vedi

Tangent Lines and Derivatives

This page introduces the concept of tangent lines to a function and their relation to derivatives. It explains how to find the equation of a tangent line using limits and the incremental ratio.

The page begins by discussing the classical problem of determining the tangent line to a curve at a given point. It introduces the concept of a secant line and explains how the tangent line is the limit position of the secant line as a second point approaches the point of tangency.

Definition: The tangent line at point P is the limit position of the secant line obtained by making point Q approach point P.

The page then introduces the formula for the slope of the tangent line:

Formula: m(tangent at P) = lim(h→0) [f(x₀+h) - f(x₀)] / h

This formula is crucial for understanding the retta tangente in un punto formula and the coefficiente angolare retta tangente in un punto.

Highlight: The concept of limits is fundamental to understanding derivatives and tangent lines in calculus.

Non c'è niente di adatto? Esplorare altre aree tematiche.

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

Knowunity è stata inserita in un articolo di Apple ed è costantemente in cima alle classifiche degli app store nella categoria istruzione in Germania, Italia, Polonia, Svizzera e Regno Unito. Unisciti a Knowunity oggi stesso e aiuta milioni di studenti in tutto il mondo.

Ranked #1 Education App

Scarica

Google Play

Scarica

App Store

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

4.9+

Valutazione media dell'app

15 M

Studenti che usano Knowunity

#1

Nelle classifiche delle app per l'istruzione in 12 Paesi

950 K+

Studenti che hanno caricato appunti

Non siete ancora sicuri? Guarda cosa dicono gli altri studenti...

Utente iOS

Adoro questa applicazione [...] consiglio Knowunity a tutti!!! Sono passato da un 5 a una 8 con questa app

Stefano S, utente iOS

L'applicazione è molto semplice e ben progettata. Finora ho sempre trovato quello che stavo cercando

Susanna, utente iOS

Adoro questa app ❤️, la uso praticamente sempre quando studio.

Iscriviti per mostrare il contenuto. È gratis!

Accesso a tutti i documenti

Migliora i tuoi voti

Unisciti a milioni di studenti

Iscrivendosi si accettano i Termini di servizio e la Informativa sulla privacy.

Scopriamo la Retta Tangente e la Derivata: Esempi e Formule Facili!

The document provides a comprehensive overview of derivatives in calculus, focusing on tangent lines, incremental ratios, and derivative rules. It covers the geometric interpretation of derivatives, derivability conditions, and formulas for various functions including trigonometric and inverse functions. The material is suitable for students studying calculus and mathematical analysis.

• Key topics include retta tangente formula, rapporto incrementale formula, and derivata funzione inversa.
• The document explains the concept of limits in relation to derivatives and tangent lines.
• It provides detailed derivations and proofs for important theorems and formulas.
• Examples and geometric interpretations are used to illustrate abstract concepts.

12/9/2022

119

 

4ªl/5ªl

 

Matematica

7

DERIVATE
Retta tg a y = f(x) in un suo punto P
YP
eg fas. rette perp In alcuni casi sappiamo gra' come procedere
(nella para bola)
10eq. √4=

Incremental Ratio and Derivability

This page delves deeper into the concept of the incremental ratio and introduces the formal definition of derivability. It explains the geometric interpretation of the incremental ratio and its relation to the slope of the secant line.

The page defines the incremental ratio as:

Formula: [f(x₀+h) - f(x₀)] / h

Where h represents the increment of the independent variable.

Vocabulary: The incremental ratio is also known as the rapporto incrementale in Italian.

The page then provides the formal definition of derivability:

Definition: A function f(x) is derivable at a point x₀ if:

  1. It is defined in a neighborhood of x₀
  2. The limit of the incremental ratio exists and is finite as h approaches 0

The page also introduces an important theorem:

Theorem: If f(x) is derivable at x₀, then it is continuous at x₀.

This theorem highlights the relationship between derivability and continuity, which is crucial for understanding the definizione di derivata.

Example: The geometric representation of the incremental ratio is the slope of the secant line passing through points P and Q on the function's graph.

DERIVATE
Retta tg a y = f(x) in un suo punto P
YP
eg fas. rette perp In alcuni casi sappiamo gra' come procedere
(nella para bola)
10eq. √4=

Derivative Rules and Formulas

This page provides a comprehensive list of derivative rules and formulas for various functions. It includes derivatives of basic functions, trigonometric functions, and exponential functions.

Some key derivative formulas presented are:

Formula:

  • D[x^n] = nx^(n-1)
  • D[sin x] = cos x
  • D[e^x] = e^x
  • D[ln x] = 1/x

The page also introduces more complex derivative rules, such as the product rule and the quotient rule:

Formula:

  • Product Rule: D[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)
  • Quotient Rule: D[f(x)/g(x)] = [f'(x)g(x) - f(x)g'(x)] / [g(x)^2]

These rules are essential for calculating derivatives of more complex functions and are crucial for understanding derivata funzione composta.

Highlight: The product and quotient rules allow for the calculation of derivatives for a wide range of complex functions.

DERIVATE
Retta tg a y = f(x) in un suo punto P
YP
eg fas. rette perp In alcuni casi sappiamo gra' come procedere
(nella para bola)
10eq. √4=

Inverse Functions and Angles Between Curves

This final page focuses on the derivatives of inverse trigonometric functions and introduces the concept of angles between curves.

The page provides formulas for the derivatives of inverse trigonometric functions:

Formula:

  • D[arcsin x] = 1 / √(1-x^2)
  • D[arccos x] = -1 / √(1-x^2)
  • D[arctan x] = 1 / (1+x^2)
  • D[arccot x] = -1 / (1+x^2)

These formulas are crucial for understanding derivata funzione inversa esempi and derivata della funzione inversa esercizi svolti.

The page concludes with a discussion on finding the angle between two curves at their intersection point. It provides the formula:

Formula: tan θ = |m₁ - m₂| / (1 + m₁m₂)

Where m₁ and m₂ are the slopes of the tangent lines to the curves at the intersection point.

Highlight: The concept of angles between curves has important applications in geometry and physics, particularly in understanding the behavior of intersecting paths or trajectories.

DERIVATE
Retta tg a y = f(x) in un suo punto P
YP
eg fas. rette perp In alcuni casi sappiamo gra' come procedere
(nella para bola)
10eq. √4=

Tangent Lines and Derivatives

This page introduces the concept of tangent lines to a function and their relation to derivatives. It explains how to find the equation of a tangent line using limits and the incremental ratio.

The page begins by discussing the classical problem of determining the tangent line to a curve at a given point. It introduces the concept of a secant line and explains how the tangent line is the limit position of the secant line as a second point approaches the point of tangency.

Definition: The tangent line at point P is the limit position of the secant line obtained by making point Q approach point P.

The page then introduces the formula for the slope of the tangent line:

Formula: m(tangent at P) = lim(h→0) [f(x₀+h) - f(x₀)] / h

This formula is crucial for understanding the retta tangente in un punto formula and the coefficiente angolare retta tangente in un punto.

Highlight: The concept of limits is fundamental to understanding derivatives and tangent lines in calculus.

Non c'è niente di adatto? Esplorare altre aree tematiche.

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

Knowunity è stata inserita in un articolo di Apple ed è costantemente in cima alle classifiche degli app store nella categoria istruzione in Germania, Italia, Polonia, Svizzera e Regno Unito. Unisciti a Knowunity oggi stesso e aiuta milioni di studenti in tutto il mondo.

Ranked #1 Education App

Scarica

Google Play

Scarica

App Store

Knowunity è l'app per l'istruzione numero 1 in cinque paesi europei

4.9+

Valutazione media dell'app

15 M

Studenti che usano Knowunity

#1

Nelle classifiche delle app per l'istruzione in 12 Paesi

950 K+

Studenti che hanno caricato appunti

Non siete ancora sicuri? Guarda cosa dicono gli altri studenti...

Utente iOS

Adoro questa applicazione [...] consiglio Knowunity a tutti!!! Sono passato da un 5 a una 8 con questa app

Stefano S, utente iOS

L'applicazione è molto semplice e ben progettata. Finora ho sempre trovato quello che stavo cercando

Susanna, utente iOS

Adoro questa app ❤️, la uso praticamente sempre quando studio.